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Our goals

We study the fundamental limits of deep neural network
learning.

We assume an optimal learning algorithm and access to
infinite amounts of data.

We want to understand fundamental limits in representing
functional relationships Φ (learned in practice) in the form

Φ := WL ◦ ρ ◦WL−1 ◦ ρ ◦ · · · ◦ ρ ◦W1

We work in two settings: function approximation -
‖Φ− f‖∞ ≤ ε and probability distribution approximation -
W (Φ#U, f) ≤ ε.
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Neural networks

A map Φ : RN0 → RNL given by

Φ := WL ◦ ρ ◦WL−1 ◦ ρ ◦ · · · ◦ ρ ◦W1

is called a neural network (NN).

Affine maps: W` = A`x+ b` : RN`−1 → RN` , ` ∈ {1, 2, . . . , L}

Non-linearity or activation function: ρ : x→ max(0, x) acts
component-wise

Network connectivity: M(Φ) – total number of non-zero
parameters in W`

Depth of network or number of layers: L(Φ) := L

Width of network: W(Φ) := max`=0,...,LN`

We denote by Nd,d′ the set of all ReLU networks with input
dimension N0 = d and output dimension NL = d′. N1,d



Generation of photographs of human faces

Examples of Photorealistic GAN-Generated Faces [Karras et al., 2018]



Text-to-image translation

Example of Textual Descriptions and GAN-Generated Photographs of Birds
[Zhang et al., 2017]



Photo inpainting

Example of GAN-Generated Photograph Inpainting Using Context Encoders
[Pathak et al., 2016]



And much more...

Generation of Realistic Photographs

Generation of Cartoon Characters

Image-to-Image Translation

Semantic-Image-to-Photo Translation

Face Frontal View Generation

Generate New Human Poses

Photos to Emojis

Photograph Editing

Face Aging

Photo Blending

Super Resolution

Clothing Translation

Video Prediction

3D Object Generation



Outline of the talk

Limits of learning functions

Approximation of basic functions, namely x2, polynomials, and
sinusoids

Approximation of function classes

Optimal representability

Limits of learning distributions

Transporting between 1-dimensional distributions

Transporting to arbitrary high-dimensional distributions

Optimality of the generative network



Sawtooth function

Sawtooth function g : [0, 1]→ [0, 1],

g(x) =

{
2x, if x < 1

2 ,

2(1− x), if x ≥ 1
2 ,

let g1(x) = g(x), and define the “sawtooth” function of order s as
the s-fold composition of g with itself according to

gs := g ◦ g ◦ · · · ◦ g︸ ︷︷ ︸
s

, s ≥ 2.
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NN realize sawtooth as g(x) = 2ρ(x)− 4ρ(x− 1/2) + 2ρ(x− 1).



Approximation of x2

fm(x) = x−
m∑
s=1

gs(x)

22s

Image credit: [Yarotsky, 2017]



Follow-up results

Multiplication realized as a linear combination of squaring networks:

xy =
1

2

(
(x+ y)2 − x2 − y2

)
Proposition (Polynomial approximation)

There exists a constant C > 0 such that for all m ∈ N,
a = (ai)

m
i=0 ∈ Rm+1, D ∈ R+, and ε ∈ (0, 1/2), there is a network

Φa,D,ε ∈ N1,1 with
L(Φa,D,ε) ≤ Cm(log(1/ε) +m log(dDe) + log(m) + log(d‖a‖∞e)),
W(Φa,D,ε) ≤ 9, and satisfying

‖Φa,D,ε(x)−
m∑
i=0

aix
i‖L∞([−D,D]) ≤ ε.



Approximation of periodic functions

Main idea: Taylor series approximation of one period and periodic
extension through “sawtooth” function.

Theorem (Cosine approximation)

There exists a constant C > 0 such that for every a,D ∈ R+,

ε ∈ (0, 1/2), there is a network Ψa,D,ε ∈ N1,1 with

L(Ψa,D,ε) ≤ C((log(1/ε))2 + log(daDe)), W(Ψa,D,ε) ≤ 9, and

satisfying

‖Ψa,D,ε(x)− cos(ax)‖L∞([−D,D]) ≤ ε.



Approximation of periodic functions con’t

x 7→ cos(2πx) is 1-periodic and

even. Recall the “sawtooth”

functions gs : [0, 1]→ [0, 1] and

note that

cos(2π2sx) = cos(2πgs(x)).

This “periodization trick”

avoids coefficients of

exponential magnitude, coming

from Taylor polynomial for

cos(ax).



Exponential approximation accuracy

Approximating network has finite width and depth scaling
poly-log in 1/ε.

Owing to
M(Φ) ≤ L(Φ)W(Φ)(W(Φ) + 1),

we have
ε ≤ 2−(M(Φ))1/p .

Finite width combined with poly-log (in 1/ε) depth yields
exponential error decay in connectivity.



Approximation of signal classes

Definition

Let d ∈ N, Ω ⊂ Rd, and consider compact C ⊂ L2(Ω), to which we
refer as function class.

Encoders and decoders:

E` :=
{
E : C → {0, 1}`

}
D` :=

{
D : {0, 1}` → L2(Ω)

}
Complexity is measured in the number of bits needed to store C.

Classical encoders - dictionaries (countable set of functions).

We develop theory for neural network encoders.



Optimal exponent

Definition

Minimax code length:

L(ε, C) := min
{
` ∈ N : ∃(E,D) ∈ E` ×D` :

sup
f∈C
‖D(E(f))− f‖L2(Ω) ≤ ε

}
Optimal exponent:

γ∗(C) := sup
{
γ ∈ R : L(ε, C) ∈ O

(
ε−1/γ

)
, ε→ 0

}
γ∗(C) quantifies “description complexity” of function class C
Larger γ∗(C) ⇒ smaller growth rate ⇒ smaller memory
requirements for storing signals f ∈ C



Nonlinear approximation through dictionaries

For a function class C ⊂ L2(Ω), and a dictionary
D = (ϕi)i∈I ⊂ L2(Ω), γ∗(C,D) is defined as the supremal γ > 0 in

sup
f∈C

inf
IM⊆I,

#IM=M, (ci)i∈IM

∥∥∥∥∥∥f −
∑
i∈IM

ciϕi

∥∥∥∥∥∥
L2(Ω)

∈ O(M−γ), M →∞

Restrict search for the M elements in D to the first π(M)
elements.

Require that the coefficients ci be uniformly bounded so that
they can be quantized and stored with a finite number of bits.

If γ∗(C,D) satisfying these conditions is equal γ∗(C), we say that the
function class C is optimally representable by D.



Function classes and their optimal exponents

Class F optimal dictionary γ∗(C)
L2-Sobolev Wm

2 Fourier or Wavelet m
Lp-Sobolev∗ Wm

p Wavelet m/d

Hölder Cα Wavelet α

Bump Algebra B1
1,1 Wavelet 1

Bounded Variation BV Haar 1

Besov∗∗ Bm
p,q Wavelet m/d

Modulation∗∗∗ M s
p,p Wilson 1

1/p−1/2+2s/d

* p ∈ [1,∞],m > d(1/p− 1/2)+

** p, q ∈ (0,∞],m > d(1/p− 1/2)+

*** 1 < p < 2, s ∈ R+



Approximation with deep neural networks

We develop the new concept of best M-weight
approximation through deep neural networks

Neural network interpreted as an encoder and its complexity
is measured in terms of number of bits needed to store
network topology and quantized weights



Best M -weight approximation

For a function class C ⊆ L2(Ω), γ∗N (C) is defined as the supremal
γ > 0 in

sup
f∈C

inf
Φ∈Nd,1
M(Φ)≤M

‖f − Φ‖L2(Ω) ∈ O(M−γ), M →∞.

Infimum over all possible network topologies. The rate
benchmarks all learning algorithms that map an f and an
ε > 0 to a neural network.

In order to encode, we additionally need polylogarithmic depth
and polynomial weight growth in M .

If γ∗N (C) satisfying these conditions is equal γ∗(C), we say that the
function class C is optimally representable by neural networks.



Transitioning from dictionaries to neural networks

For given C and associated D, we establish conditions

guaranteeing the existence of a neural network with connectivity

O(M) that achieves the same uniform error over C as best

M -term approximation.

Simply put, if all elements in D are approximated by a network

with exponential error decay in connectivity, then D is

effectively representable by neural networks.

Leads to a characterization of function classes C that are

optimally representable by neural networks.



Affine dictionaries - scaling and translation

Definition (Affine dictionary)

Consider the compactly supported functions

gs :=
r∑

k=1

cskf(· − bk), s = 0, . . . , S.

We define the affine dictionary D ⊂ L2(Ω) corresponding to (gs)
S
s=0

according to

D :=
{
gj,es :=

(
|det(As,j)|

1
2 gs(As,j · − δe)

) ∣∣
Ω

: s ∈ [1 : S], e ∈ Zd,

j ∈ N, and gj,es 6= 0
}
,

and refer to f as the generator (function) of D.

Includes wavelets, ridgelets, curvelets, shearlets, α-shearlets, and
more generally α-molecules.



Gabor dictionaries - frequency shifts

Definition (Gabor dictionaries)

Let d ∈ N, f ∈ L2(Rd), and x, ξ ∈ Rd. Define the translation
operator Tx : L2(Rd)→ L2(Rd) according to

Txf(t) := f(t− x)

and the modulation operator Mξ : L2(Rd)→ L2(Rd,C) as

Mξf(t) := e2πi〈ξ,t〉f(t) = cos(2π〈ξ, t〉)f(t) + i sin(2π〈ξ, t〉)f(t).

Let Ω ⊆ Rd, α, β > 0, and g ∈ L2(Rd). The Gabor dictionaries
G(g, α, β,Ω) ⊆ L2(Ω) is defined as

G(g, α, β,Ω) :=
{
MξTxg

∣∣
Ω

: (x, ξ) ∈ αZd × βZd
}
.

Includes Wilson bases.



Optimality transfer

Central result

Optimality of a representation system D for a signal class C combined
with effective representability of D by neural networks implies optimal
representability of C by neural networks.

Optimal dictionaries

Affine dictionaries (e.g. wavelets, ridgelets, curvelets, shearlets,
α-shearlets) and Gabor dictionaries are optimally representable by
neural networks.



Main results - function approximation

Deep neural networks provide exponential approximation
accuracy for a wide range of functions such as the squaring
operation, multiplication, polynomials, sinusoidal functions, and
even one-dimensional oscillatory textures and fractal functions.

Deep neural networks can learn optimally vastly different
function classes such as affine dictionaries, Gabor dictionaries,
and smooth functions.

This universality is afforded by a concurrent invariance
property of deep networks to translations, scalings, and
frequency-shifts.



Generation of multi-dimensional distributions from U [0, 1]

We will show that there is no fundamental limitation in going from
low dimension to a higher one.



Histogram distributions
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Our goal

Transport U [0, 1] to an approximation of any given distribution
supported on [0, 1]d. For illustration purposes we look at d = 2.



ReLU networks and histograms

Takeaway message

For any histogram distribution there exists a ReLU net that generates
it from a uniform input. This net realizes an inverse cumulative
distribution function (cdf−1).



Related work

Theorem ([Bailey and Telgarsky, 2018, Th. 2.1], case d = 2)

There exists a ReLU network Φ : x→ (x, gs(x)),Φ ∈ N1,d with
connectivity M(Φ) ≤ Cs for some constant C > 0, and of depth
L(Φ) ≤ s+ 1, such that

W (Φ#U [0, 1], U [0, 1]2) ≤
√

2

2s
.

Main proof idea - space-filling property of sawtooth function.



Transporting uniform distribution to higher dimensions

M : x→

(
x, gs(x), g2s(x), . . . , g(d−1)s(x)

)
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Generating a 3D uniform distribution via x→ (x, g3(x), g6(x)).



Generalization of the space-filling property



Approximating 2D distributions

M : x→ (x, f(gs(x)))
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Generating a histogram distribution via the transport map (x, f(gs(x))).
Left—the function f(x), center—f(g4(x)), right—a heatmap of the
resulting histogram distribution.



Approximating 2D distributions con’t

M : x→

(
fmarg(x),

n−1∑
i=0

fi(gs(nfmarg(x)− i))

)
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Generating a general 2-D histogram distribution. Left—the function

f1 = f3 = fmarg, center—
∑3
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(
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, right—a heatmap of the

resulting histogram distribution. The function f0 = f2 is depicted on the
left in the previous slide.



Generalization to d dimensions

Definition

Let z ∈ [0 : (n− 1)]d, zi = z|Ri−1 , and let fziXi be the piecewise linear
function that satisfies fziXi#U [0, 1] = pziXi , for all i ∈ [1 :d], and let for
all s ∈ N

F0(x, z1, s) := x,

Fr(x, zr+1, s) := gs
(
nfzrXr

(
Fr−1(x, zr, s)

)
− zr

)
, 1 ≤ r < d.

We define Zr recursively as

Z1(x, s) := fz1X1
(x),

Zr(x, s) :=
∑
zr

fzrXr
(
Fr−1(x, zr, s)

)
, 1 < r ≤ d.



Generalization to d dimensions con’t

Fr−1(x, zr, s) - sth-order sawtooth function localizing mass
pX(x|Rr ∈ czr) on the set czr × [0, 1] uniformly along the rth
coordinate.

Zr(x, s) modifies the slope per linear region of Fr−1 to
approximate the conditional distributions along the rth
coordinate.

Theorem

For every distribution fX in E [0, 1]dn, the map

M : x→ (Z1(x, s), Z2(x, s), . . . , Zd(x, s))

satisfies

W (M#U [0, 1], fX) ≤
√
d

n2s
.



Generalization to d dimensions con’t
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Generating histogram distributions with NNs

Theorem

For any fX ∈ E [0, 1]dn, d > 1, there exists a ReLU network Ψ ∈ N1,d

with M(Ψ) = O(nd + snd−1), L(Ψ) = (s+ 3)d− s, such that

W (Ψ#U, fX) ≤
√
d

n2s
.

Error decays exponentially with depth and linearly in n

Connectivity is in O(nd) which is of the same order as the
number of E [0, 1]dn’s parameters (nd − 1).

Special case n = 1 coincides with [Bailey and Telgarsky, 2018,
Th. 2.1].



Universal approximation

Theorem

For any distribution ν on [0, 1]d, there exists a ReLU network
Φ ∈ N1,d with M(Φ) = O(nd + snd−1) and L(Φ) = (s+ 3)d− s
such that

W (Φ#U, ν) ≤
√
d

n2s
+

2
√
d

n
.

Takeaway message

ReLU networks have no fundamental limitation in going from low
dimension to a higher one.



Fundamental lower bound on encoding distributions

Definition ([Graf and Luschgy, 2000])

The minimal n-term quantization error of a given distribution ν and
n ∈ N is defined as Vn(ν) := inf{W (ν, µ) : |supp(µ)| ≤ n}.

Theorem ([Graf and Luschgy, 2000][Theorem 6.2])

Let X ∼ ν with E‖X‖1+δ <∞ for some δ > 0, then

lim
n→∞

n1/dVn(ν) = C,

where C > 0 is a constant depending only on d.

Allows to conclude that to encode a probability distribution one
needs at least d log(ε−1) bits.



Complexity of generative networks

Lemma

Consider the class of quantized histogram distributions Ẽδ[0, 1]dn and
let ε ∈ (0, 1/2). Then, there exists a set of δ

n -quantized ReLU

networks Φ(ε, ·) of cardinality 2`(ε), where `(ε) ≤ C log(ε−1), with C
a constant depending on d, δ, n, such that

sup
ν∈Ẽδ[0,1]dn

W (Φ(ε, ν)#U, ν) ≤ ε.



Complexity of generative networks con’t

Lemma

Consider the class of non-singular distributions supported on [0, 1]d,
denoted by F([0, 1]d), and let ε ∈ (0, 1/2). Then, there exists a set
of quantized ReLU networks Φ(ε, ·) of cardinality 2`(ε), where
`(ε) ≤ Cε−d log2(ε−1), with C a constant depending on d, such that

sup
ν∈F([0,1]d)

W (Φ(ε, ν)#U, ν) ≤ ε.



Main results - distribution generation

Deep neural networks are able to generate any d-dimensional
probability distribution with bounded support without
incurring a cost relative to generating the d-dimensional target
distribution from d independent random variables.

For histogram target distributions, the number of bits needed
to uniquely encode the corresponding generative network is
close to the fundamental limit as dictated by quantization
theory.

This is enabled by a vast generalization of the space-filling
approach discovered recently in [Bailey and Telgarsky, 2018].
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