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Primal-dual setting [Dünner et al., 2016]

The following pair of dual to each other optimization problems is
considered:

min
α∈Rn

[
D(α) := f (Aα) +

∑
i

gi (αi )
]
,

min
w∈Rd

[
P(w) := f ∗(w) +

∑
i

g∗i (−a>i w)
]
.

Examples:

SVM: f ∗(w) = λ
2‖w‖

2
2, g

∗
i (−a>i w) = max(0, 1− yia>i w).

LASSO: f (Aα) = ‖y − Aα‖22, gi (αi ) = λ|αi |.

Goal

Find a εP -suboptimal w or εD-suboptimal α, i.e., P(w)− P(w?) ≤ εP or
D(α)− D(α?) ≤ εD .
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Optimality conditions and classic algorithm

Optimality Conditions

Under assumption of strong duality: P(w?) = −D(α?) and

w? ∈ ∂f (Aα?) α?i ∈ ∂g∗i (−a>i w?) for all i ∈ [n]

Duality gap is defined as: G (α,w) := P(w(α))− (−D(α)).
It can act as a stopping criterion G (α) ≥ P(w(α))− P(w?).

Algorithm 1 Stochastic Coordinate Descent

1: let α(0) = 0 ∈ Rn,w (0) = w(α(0))
2: for t = 0, 1, ...T do
3: Sample i ∈ [n] randomly according to distribution p
4: Find ∆αi minimizing D(α(t) + e i∆αi )
5: α(t+1) = α(t) + e i∆αi , w (t+1) = w(α(t+1))
6: end for
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Motivation

The Limitations of Existing Algorithms

sampling of the active datapoint uniformly at random in each iteration

the convergence rate is negatively affected

Stochastic Optimization with Adaptive Importance Sampling

adaptively changes the sampling probability distribution according to
the data and values of the dual variables

improved practical and theoretical convergence rates
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Basic definitions

Definition (Dual Residual, ([Csiba et al., 2015], Def. 1))

Consider our primal-dual setting. Given dual variable α, the i-th dual
residue on iteration t is given by:

κ
(t)
i = u

(t)
i − α

(t)
i ,

where u
(t)
i = ∇g∗i (−a>i w (t)) .

Definition (Coherent probability vector, ([Csiba et al., 2015], Def. 2))

We say that probability vector p(t) ∈ Rn is coherent with the dual residue

vector κ(t) if for all i ∈ [n], we have κ
(t)
i 6= 0 → p

(t)
i > 0.

Definition (t-support set)

We call set It : It = {i ∈ [n] : κ
(t)
i 6= 0} ⊆ [n] a t-support set.
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Core lemma

Lemma (A generalization of ([Csiba et al., 2015], Lemma 3))

Consider Stochastic Coordinate Descent. Let f be 1/β-smooth and gi be
µi -strongly convex with convexity parameter µi ≥ 0 ∀i ∈ [n]. For the case
µi = 0 we require gi to have a bounded support. Then for any iteration t,
any sampling distribution p(t) coherent with κ(t) and any

θ ∈ [0,mini∈It p
(t)
i ] it holds that:

E[D(α(t+1))|α(t)] ≤ D(α(t))− θG (α(t)) +
θ2n2

2
F (t),

where

F (t) =
1

n2βθ

∑
i∈It

(θ(µiβ + ‖ai‖2)

p
(t)
i

− µiβ
)
|κ(t)i |

2.
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General convex objectives

Theorem

Consider Stochastic Coordinate Descent. Assume f is 1
β -smooth function.

Then, if g∗i is Li -Lipschitz for each i and p(t) is coherent with κ(t), it
suffices to have a total number of iterations of

T ≥ max

{
0,

1

pmin
log
( 2ε0D
n2pminF ◦

)}
+

5F ◦n2

ε
− 1

pmin

or alternatively

T ≥ 5F ◦n2

ε
+

5ε
(0)
D

εpmin
− 1

pmin

to obtain a duality gap G (ᾱ) ≤ ε, where ε0D is the initial dual
suboptimality and F ◦ is an upper bound on E[F (t)] taken over all
coordinates at 1, . . . ,T algorithm iterations.
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General convex objectives

From this theorem we can recover as a special case:

1 ([Dünner et al., 2016], Theorem 9) by setting pi = 1
n and using R

instead of ‖ai‖ (R ≥ ‖ai‖ ∀i ∈ [n]).

2 ([Shalev-Shwartz and Zhang, 2013], Theorem 2) is a special case of
([Dünner et al., 2016], Theorem 9) for quadratic regularizer.

3 ([Zhao and Zhang, 2014], Theorem 5) by setting pi = Li∑
j Lj

.
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Maximizing rate in case of infinitesimal ε

Recall that the number of iterations sufficient to achieve ε-accuracy is:

T ≥ max

{
0,

1

pmin
log
( 2ε0D
n2pminF ◦

)}
+

5F ◦n2

ε
− 1

pmin

In limit ε→ 0, the only significant term is 5F◦n2

ε , therefore we want to

minimize F (t), which consequently minimizes F ◦. We solve the following
optimization problem:

p(t) = arg min
p(t)

F (t) := arg min
p(t)

1

n2β

∑
i

( |κ(t)i |2‖ai‖2

pti

)
.
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Optimal sampling distributions

1) For uniform sampling ∀t:

pi :=
1

n
; F ◦unif = E

[
1

β

∑
i

( |κ(t)i |2‖ai‖2

n

)]
;

2) For importance sampling ∀t:

pi :=
Li‖ai‖∑
j Lj‖aj‖

; F ◦imp = E
[

1

β

∑
i

( |κ(t)i |2‖ai‖
Lin

)∑
j

(Lj‖aj‖
n

)]
;

3) For adaptive sampling ∀t:

p
(t)
i :=

|κ(t)i |‖ai‖∑
j |κ

(t)
j |‖aj‖

; F ◦ada = E
[

1

β

(∑
i

|κ(t)i |‖ai‖
n

)2]
;
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Support set uniform sampling

Let’s assume that the size of the t-support set never exceeds some
m ∈ [1, n] and compare two sampling methods:

Uniform sampling: p
(t)
i = 1

n ; pmin = 1
n ,

F (t) = 1
n2β

∑
i∈It

(
|κ(t)i |

2‖ai‖2

p
(t)
i

)
= 1

nβ

∑
i∈It |κ

(t)
i |2‖ai‖2 ≤ Funif

Number of iterations: T ≥ max

{
0, n log

(
2ε0D
nFunif

)}
+ 5n2Funif

ε

Support set uniform:

{
p
(t)
i = 1

m , if κ
(t)
i 6= 0

p
(t)
i = 0, otherwise

; pmin = 1
m ,

F (t) = 1
n2β

∑
i∈It

(
|κ(t)i |

2‖ai‖2

p
(t)
i

)
= m

n2β

∑
i∈It |κ

(t)
i |2‖ai‖2 ≤ m

n Funif

Number of iterations: T ≥ max

{
0,m log

(
2ε

(0)
D

nFunif

)}
+ 5nmFunif

ε
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Maximizing rate in case of constant ε

The number of iterations T is directly proportional to F ◦ and 1/pmin, the
optimal distribution p should minimize F ◦ and 1/pmin at the same time.
We define mixed distribution as:p

(t)
i = σ

m + (1− σ)
|κ(t)i |‖ai‖∑
j |κ

(t)
j |‖aj‖

, if κ
(t)
i 6= 0

p
(t)
i = 0, otherwise

where σ ∈ [0, 1]. This distribution gives us the following bounds on F ◦

and 1/pmin:

F ◦mix ≤
F ◦ada

1− σ
1

pmin
≤ m

σ
,

and bound on the number of iterations:

T ≥
5F ◦adan

2

ε(1− σ)
+
ε
(0)
D m

εσ
.
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Gap-wise sampling

Remark

The duality gap can be decomposed as a sum of coordinate-wise duality
gaps:

G (α) =
∑
i

Gi (αi ,w) =
∑
i

(
g∗i (−a>i w) + gi (αi ) + αia>i w

)

Definition (Nonuniformity measure, [Osokin et al., 2016])

The nonuniformity measure χ(x) of a vector x ∈ Rn, is defined as:

χ(x) :=
√

1 + n2Var[p],

where p := x
‖x‖1 is the probability vector obtained by normalizing x .
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Gap-wise sampling

Theorem

Consider Stochastic Coordinate Descent. Assume f is 1
β -smooth function.

Then, if g∗i is Li -Lipschitz for each i and p
(t)
i := Gi (α

(t))

G(α(t))
then on each

iteration it holds that

E[ε
(t)
D ] ≤

C + 2nε
(0)
D

t + 2n
,

where C is an upper bound on E
[
2nχ(

−→
F )

∑
i ‖ai‖2|κ

(t)
i |

2

(χ(
−→
G ))3β

]
, where the

expectation is taken over the random choice of the sampled coordinate at

iterations 1, . . . , t of the algorithm. Here
−→
G and

−→
F are defined as:

−→
G := (Gi (α

(t)))ni=1,
−→
F := (‖ai‖2|κ

(t)
i |

2)ni=1.
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Gap-wise vs uniform

From intermediate result in the proof of Theorem 1, uniform distribution
(pi = 1/n) has the following convergence rate:

E[ε
(t)
D ] ≤

2n
β E
[∑

i |κ
(t)
i |2‖ai‖2

]
+ 2nε

(0)
D

2n + t
.

The rate of gap-wise sampling depends on non-uniformity measures χ(
−→
G )

and χ(
−→
F ):

E[εtD ] ≤
2n
β E
[

χ(
−→
F )

(χ(
−→
G ))3

∑
i |κ

(t)
i |2‖ai‖2

]
+ 2nε

(0)
D

2n + t
.

In the worst case scenario when variance is maximal in (|κ(t)i |2‖ai‖2)ni=1,

χ(
−→
F ) ≈

√
n, the rate of gap-wise sampling is better than of uniform only

when the gaps are non-uniform enough i.e., χ(
−→
G ) ≥ n

1
6 .
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Lasso problem

min
α∈Rn

[
D(α) := f (Aα) +

∑
i

gi (αi )
]
,

min
w∈Rd

[
P(w) := f ∗(w) +

∑
i

g∗i (−a>i w)
]
.

Here f (Aα) = 1
2n‖Aα− y‖22 and gi (αi ) = λ|αi |. To satisfy requirements

of the theorem we use ”Lipschitzing trick” [Dünner et al., 2016] on gi (αi )
to make g∗i a Lipschitz function:

ḡi (αi ) =

{
λ|αi |, if |αi | ≤ B

+∞, otherwise

The ḡi -conjugate will be:

ḡ∗i (ui ) = max
αi :|αi |≤B

uiαi − λ|αi | = B
[
|ui | − λ

]
+
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Stochastic Coordinate Descent - fixed

Algorithm 2 Stochastic Coordinate Descent

1: let α(0) = 0, w (0) = ∇f (Aα(0))
2: for t = 0,1,... do
3: sample j from [d ] according to distribution p
4: let zj = (∇f (α(t)))j

5: α
(t+1)
j = sλ(α

(t)
j − zj)

6: w (t+1) = ∇f (Aα(t+1))
7: end for

uniform pi = 1
d

importance pi = Li‖ai‖∑
j Lj‖aj‖

(heuristic) gap-init pi =
G

(0)
i∑

j G
(0)
j
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Stochastic Coordinate Descent - adaptive

Algorithm 3 Stochastic Coordinate Descent (adaptive)

1: let α(0) = 0, w (0) = ∇f (Aα(0))
2: for t = 0,1,... do
3: calculate absolute values of dual residuals |κ(t)j | for all j ∈ [d ]

4: generate adapted probabilities distribution p(t):

p
(t)
i =

|κ(t)i |‖ai‖∑
j |κ

(t)
j |‖aj‖

5: sample j from [d ] according to p(t)

6: let zj = (∇f (α(t)))j

7: α
(t+1)
j = sλ(α

(t)
j − zj)

8: w (t+1) = ∇f (Aα(t+1))
9: end for
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Stochastic Coordinate Descent - adaptive

Algorithm 4 Stochastic Coordinate Descent (supportSet-uniform)

1: let α(0) = 0, w (0) = ∇f (Aα(0))
2: for t = 0,1,... do
3: calculate absolute values of dual residuals |κ(t)j | for all j ∈ [d ]

4: find t-support set It = {i ∈ [d ] : κ
(t)
i 6= 0} ⊆ [d ]

5: generate adapted probabilities distribution p(t):{
p
(t)
i = 1

|It | , if κ
(t)
i 6= 0

p
(t)
i = 0, otherwise

6: sample j from [d ] according to p(t)

7: let zj = (∇f (α(t)))j

8: α
(t+1)
j = sλ(α

(t)
j − zj), w (t+1) = ∇f (Aα(t+1))

9: end for
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Stochastic Coordinate Descent - adaptive

Algorithm 5 Stochastic Coordinate Descent (ada-uniform)

1: let α(0) = 0, w (0) = ∇f (Aα(0))
2: for t = 0,1,... do
3: calculate absolute values of dual residuals |κ(t)j | for all j ∈ [d ]

4: find t-support set It = {i ∈ [d ] : κ
(t)
i 6= 0} ⊆ [d ]

5: generate adapted probabilities distribution p(t):p
(t)
i = 1

2|It | +
|κ(t)i |‖ai‖

2
∑

j |κ
(t)
j |‖aj‖

, if κ
(t)
i 6= 0

p
(t)
i = 0, otherwise

6: sample j from [d ] according to p(t)

7: let zj = (∇f (α(t)))j

8: α
(t+1)
j = sλ(α

(t)
j − zj), w (t+1) = ∇f (Aα(t+1))

9: end for
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Stochastic Coordinate Descent - adaptive

Algorithm 6 Stochastic Coordinate Descent (ada-gap)

1: let α(0) = 0, w (0) = ∇f (Aα(0))
2: for t = 0,1,... do
3: calculate feature-wise duality gaps G

(t)
j for all j ∈ [d ]

4: generate adapted probabilities distribution p(t): p
(t)
i =

G
(t)
i∑

j G
(t)
j

5: sample j from [d ] according to p(t)

6: let zj = (∇f (α(t)))j

7: α
(t+1)
j = sλ(α

(t)
j − zj)

8: w (t+1) = ∇f (Aα(t+1))
9: end for
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Datasets and algorithm complexity

Dataset Features Points nnz/(nd) mean of ‖ai‖ Var(‖ai‖)
mushrooms 112 8124 18.8% 31.35 545

rcv1* 809 7438 0.3% 2.58 17.3

Algorithm Cost of an Epoch Mode
Lasso uniform O(nnz) uniform

Lasso importance O(nnz + n log(n)) fixed non-uniform

Lasso gap-init O(nnz + n log(n)) fixed non-uniform

Lasso supportSet-uniform O(n · nnz) adaptive

Lasso adaptive O(n · nnz) adaptive

Lasso ada-uniform O(n · nnz) adaptive

Lasso ada-division O(nnz + n log(n)) adaptive

Lasso ada-gap O(n · nnz) adaptive
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Numerical experiment - fixed
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Figure: Lasso. Comparison of different fixed distribution versions of Stochastic
Coordinate Descent Algorithm based on duality gap(left) and suboptimality(right)
measure - rcv1 dataset
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Numerical experiment - fixed
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Figure: Lasso. Comparison of different fixed distribution versions of Stochastic
Coordinate Descent Algorithm based on duality gap(left) and suboptimality(right)
measure - mushrooms dataset
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Numerical experiment - adaptive
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Figure: Lasso. Comparison of different adaptive versions of Stochastic Coordinate
Descent Algorithm based on duality gap(left) and suboptimality(right) measure -
rcv1 dataset
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Numerical experiment - adaptive

0 5 10 15 20 25

Epochs

-4

-3

-2

-1

0

1

2

3

lo
g
 o

f 
D

u
a
lit

y
G

a
p

supportSet-uniform

adaptive

ada-uniform

ada-division

ada-gap

importance

0 5 10 15 20 25

Epochs

-8

-6

-4

-2

0

2

lo
g
 o

f 
s
u
b
o
p
ti
m

a
lit

y

supportSet-uniform

adaptive

ada-uniform

ada-division

ada-gap

importance

Figure: Lasso. Comparison of different adaptive versions of Stochastic Coordinate
Descent Algorithm based on duality gap(left) and suboptimality(right) measure -
mushrooms dataset
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Summary and future work

Summary

studied SCD with adaptive sampling

proposed new adaptive and fixed nonuniform sampling schemes

analyzed their theoretical convergence rates

showed in practice that they outperform the conventional sampling
schemes

Future work

to find a better solution for the constant ε optimization problem

to find a relation between dual residuals sampling and gap-wise
sampling

to apply the theory to hinge loss SVM
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