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Abstract

The current state of the art stochastic optimization algorithms (SGD,
SVRG, SCD, SDCA, etc.) are based on sampling one active datapoint
uniformly at random in each iteration. Changing these probabilities to
better reflect the importance of each datapoint is a natural and pow-
erful idea. In this thesis we analyze Stochastic Coordinate Descent
methods with fixed non-uniform and adaptive sampling. We consider
problems with strongly convex (e.g. SVM) and general convex (e.g.
Lasso) regularizers and obtain new upper bounds on the number of
iterations needed to reach given duality gap or suboptimality. Experi-
ments on smoothed hinge loss SVM and Lasso are provided to confirm
the theoretical analysis.

Keywords. adaptive sampling, non-uniform sampling, gap-wise sampling,
stochastic coordinate descent, primal-dual framework, lasso, svm
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Chapter 1

Introduction

Coordinate descent methods [6] solve optimization problems by successively
performing line-search along coordinate directions. Their advantages are
simplicity, ease of implementation and scalability. A lot of their implemen-
tations have become state-of-the-art for many machine learning problems
[12, 7].

The traditional coordinate descent algorithms such as Stochastic Dual Co-
ordinate Ascent (SDCA) [28] and Stochastic Coordinate Descent (SCD) [24]
sample one active datapoint uniformly at random in each iteration. While
the uniform sampling guarantees the unbiasedness of the estimate, observ-
ably high variance aquired by uniform sampling negatively affects the con-
vergence rate. In the recent work [32] it is shown that by employing an ap-
propriately defined non-uniform fixed sampling strategy the convergence
rate can be significantly improved. In this thesis we go further and achieve
even better convergence rate by exploiting the notion of adaptive sampling,
which is based on changing the sampling probability distribution each itera-
tion according to the data and values of the dual variables.

The well-known duality setting of SDCA [28, 27] is restricted to strongly
convex regularizers and finite sum optimization problems. Therefore the
majority of recent research on Coordinate Descent methods is focused only
on minimization with strongly convex regularizers, e.g. [20], [4], etc.. In our
work we adopt the new primal-dual framework from Dünner et al. (2016)
[5], which contrary to the existing methods of adding a strongly-convex (L2)
term [17, 21], allows us to optimize problems with general convex regulariz-
ers leaving the algorithms and optima unaffected.

This thesis is a natural continuation of the work of Csiba et al. (2015) [4],
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1. Introduction

where they developed an adaptive version of SDCA for the one particular
problem of smoothed hinge loss SVM. Using the same approach, we equip
each dual variable with a measure of progress called ”dual residue” (we
use a generalized version of ”dual residue” in [4]) and base our adaptive
sampling scheme on these measures. We also generalize their theory from
smoothed hinge loss SVM to the general problems of minimizing convex
partially separable functions of type:

f (α) = h(Aα) + ∑
i

gi(αi), (1.1)

where A is data matrix, h - smooth function and each gi - general convex
function. This problem class includes not only smoothed hinge loss SVM,
but also Lasso, Ridge Regression, (the dual formulation of the) hinge loss
SVM, Logistic Regression, etc.. Our theoretical results for adaptive sampling
include the existing results for fixed non-uniform [32] and uniform [5] sam-
pling as special cases.

Contributions. The main contributions of this work can be summarized as
follows:

• We provide a novel theoretical analysis of convergence rate of Stochas-
tic Coordinate Descent for partially separable problems with strongly
convex and general convex regularizers.

• To the best of our knowledge, we are the first to provide a convergence
rate analysis of Stochastic Coordinate Descent with adaptive sampling
schemes for problems with general convex regularizer, e.g. Lasso.

• We introduce new adaptive and fixed non-uniform sampling schemes
for Stochastic Coordinate Descent for problems with general convex
regularizers.

• We derive the duality gap and suboptimality convergence guarantees
for arbitrary sampling distributions for both strongly convex and gen-
eral convex cases and theoretically prove that the new schemes have a
faster convergence than the conventional ones.

• We support the developed theory with numerical experiments on Lasso
and smoothed hinge loss SVM and show in practice that the new adap-
tive schemes significantly outperform the non-adaptive ones.

The thesis is structured as follows. In Chapter 2, we do the general overview
of existing literature on Stochastic Coordinate Descent. Chapter 3 presents
basic theoretical preliminaries on which the thesis is based. In Chapter 4
we propose a new convergence lemma and derive optimal adaptive and
non-adaptive schemes for strongly convex and general convex problems.
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Chapter 5 discusses the application of the developed theory on two par-
ticular problems and compares the computational complexity of proposed
sampling methods. In Chapter 6, we evaluate the performance of SCD with
the derived in preceding chapters sampling schemes. Chapter 7 summarizes
the main findings of the thesis and concludes it.
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Chapter 2

Related work

In this chapter, we review the existing works on coordinate descent for two
typical machine learning problems - SVM and Lasso.

Coordinate descent/ascent methods for optimization were studied from
the foundation of discipline. They first appeared in the work of Hildreth
(1957) [11] as a method to solve unconstrained quadratic programming prob-
lems.

The first paper to discuss coordinate descent method for Support Vector Ma-
chine (SVM) problem (Friess et al. (1998) [8]) was focused on solving SVM
dual formulation. The drawback of their algorithm was its inability take ad-
vantage of the data sparsity, which made it not suitable for large sparse data
problems. This problem was solved in Chang et al. (2008) [3], where they
were the first to propose coordinate descent methods for solving a primal
SVM. While their approach was experimentally quicker to find an optimal
solution than the other methods at that time, the non-differentiability of pri-
mal hinge loss SVM restricted their approach to only squared hinge loss
SVM problems.

The major breakthrough was made in 2008 by Hsieh et al. [12], who intro-
duced Stochastic Dual Coordinate Ascent (SDCA) method for solving linear
SVM with hinge and squared hinge loss functions. Experiments showed
that in some regimes SDCA is significantly faster than the other solvers,
such as the primal method in [3], Stochastic Gradient Descent (SGD / pega-
sos) [23], and SVMperf [13]. The theoretical analysis of SDCA was made in
Shalev-Shwartz et al. (2013) [28]. In that work the primal-dual theoretical
convergence guarantees for SDCA were derived, and it was shown that its
convergence is comparable or better than the one of Stochastic Gradient De-
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2. Related work

scent.

The convergence rate of stochastic coordinate descent methods naturally de-
pends on a sampling probability distribution over the datapoints. While the
majority of existing stochastic coordinate methods sample one active coordi-
nate uniformly at random [12, 24, 15, 26], it was shown in Zhao & Zhang
(2014) [32] that an appropriately defined non-uniform fixed sampling distri-
bution, which they called importance sampling, can significantly improve the
convergence rate.

In the work of Csiba et al. (2015) [4] the non-uniform sampling strategy was
further developed into an SDCA variant with adaptive sampling, called the
AdaSDCA algorithm. AdaSDCA updates the sampling distribution at the
beginning of each iteration based on measures of progress of dual variables
to the optimum. It was theoretically proven that in some cases, AdaSDCA
achieves a faster convergence than uniform and importance sampling. An an-
other approach for construction of adaptive sampling distribution was pro-
posed in [18], in this work the block coordinate Frank-Wolfe algorithm was
enhanced with sampling proportional to values of block-wise duality gaps.
An adaptive variant of SGD was studied by Papa et al., (2015) [19], where
they proposed an adaptive sampling scheme dependent on the past itera-
tions in a Markovian manner. Other adaptive methods are heuristics with-
out proven convergence guarantees, they include ACF [10] and ACiD [16].

The first use of coordinate descent for solving Lasso problem1 was made in
Fu (1998) [9], where he introduced a ”shooting” algorithm. However the
work of Fu was largely ignored by machine learning community and the ap-
proach gained interest only after paper of Friedman et al. (2007) [6], where
they developed a path-wise coordinate descent method, which showed com-
petitive performance with current at that time state-of-the-art LARS and
homotopy methods. The latest state-of-the-art methods for Lasso are co-
ordinate methods on the primal formulation such as GLMNET [7] and its
extensions [24, 30].

In this thesis we derive primal-dual guarantees for coordinate descent on
problems of minimizing convex partially separable functions of type (1.1)
with general convex gi. While the primal-dual guarantees for coordinate
descent on dual SVM with L2 regularization (or strongly convex gi) were
extensively studied in [29, 31, 32, 4], the L1 regularization case (or general
convex gi) was an open problem until the paper of Dünner et al., (2016) [5],

1also known as L1-regularized least squares linear regression problem
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where the new primal-dual framework was introduced and the new primal-
dual convergence guarantees for coordinate descent with uniform sampling
were obtained for a wider class of problems with general convex regularizer
(general convex gi). This class of problems includes Lasso, Ridge Regression,
hinge loss SVM, etc..

In this work we adopt the primal-dual framework of Dünner et al., (2016) [5]
to derive primal-dual guarantees for fixed non-uniform and adaptive sam-
pling of coordinates for both strongly convex and general convex gi. While
in strongly convex scenario our work reproves the results of [4], in general
convex case we introduce a new type of adaptive algorithms which show
state-of-the-art practical and theoretical performance.
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Chapter 3

Preliminaries

In this chapter, we give basic mathematical concepts, which are the building
blocks of the theory we introduce in the following chapters.

3.1 Basic definitions of convex optimization

Definition 3.1 A set X ⊆ Rn is called convex if and only if:

∀x, y ∈ X ∀0 ≤ s ≤ 1 : sx + (1− s)y ∈ X

Definition 3.2 A function f : Rn → R is convex if and only if its domain D is a
convex set and:

∀x, y ∈ D ∀0 ≤ s ≤ 1 : f (sx + (1− s)y) ≤ s f (x) + (1− s) f (y)

Definition 3.3 A function f : Rn → R is L-Lipschitz continuous if ∀a, b ∈ Rn,
we have

| f (a)− f (b)| ≤ L‖a− b‖.

Definition 3.4 A function f : Rn → R is called L-smooth, for some L > 0, if it is
differentiable and its derivative is L-Lipschitz continuous, or equivalently

f (u) ≤ f (w) + 〈∇ f (w), u−w〉+ L
2
‖u−w‖2 ∀u, w ∈ Rn.

Definition 3.5 A function f : Rn → R is called µ-strongly convex, for µ ≥ 0, if

f (u) ≥ f (w) + 〈∇ f (w), u−w〉+ µ

2
‖u−w‖2 ∀u, w ∈ Rn.

Definition 3.6 A function f : Rn → R ∪ {+∞} has B-bounded support if its
effective domain is bounded by B:

f (u) < +∞→ ‖u‖ ≤ B

9



3. Preliminaries

3.2 Convex conjugates

Definition 3.7 The convex conjugate of a function f : Rn → R is defined as

f ∗(v) := sup
u∈Rn

v>u− f (u).

Lemma 3.8 (Duality between Lipschitzness and L-Bounded Support, [5]) Given
a proper convex function g, it holds that g has L-bounded support if and only if g∗

is L-Lipschitz.

Lemma 3.9 (Duality between Smoothness and Strong Convexity, [14]) Given
a closed convex function f , it holds that f is µ-strongly convex if and only if f ∗ is
(1/µ)-smooth.

Theorem 3.10 (Fenchel-Young Inequality) Let f ∗(w) = supx∈Rn{〈w, x〉 −
f (x)}. Then the following inequality holds:

f (x) + f ∗(w) ≥ 〈w, x〉

Equality holds if w is a subgradient of f at x, w ∈ ∂ f (x).

3.3 Primal-dual setting

In this thesis we adopt the primal-dual structure of Dünner et al. (2016) [5].
We consider the following pair of optimization problems which are dual to
each other:

min
α∈Rn

[
D(α) := f (Aα) + ∑

i
gi(αi)

]
,

min
w∈Rd

[
P(w) := f ∗(w) + ∑

i
g∗i (−a>i w)

]
,

(3.1)

here A = [a1, . . . , an]. The new structure has two advantages over the stan-
dard primal-dual SDCA setting. Firstly, as will be shown in the next subsec-
tions, the new framework generalizes the duality gap in SDCA and makes
it act as a certificate for achieved solution accuracy. Secondly, the two prob-
lems in (3.1) are symmetrical to each other relatively to functions f and g,
which enables the new structure to include much more machine learning
methods than the traditional primal-dual setting of SDCA.

3.3.1 Optimality conditions

The first-order optimality conditions for problems (3.1) are given by

w ∈ ∂ f (Aα), −a>i w ∈ ∂gi(αi) for all i ∈ [n]

Aα ∈ ∂ f ∗(w), αi ∈ ∂g∗i (−a>i w) for all i ∈ [n]
(3.2)

For the proof see [2].
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3.3. Primal-dual setting

3.3.2 Duality gap

The duality gap is a difference between primal and dual solutions. From the
definition of convex conjugate and the primal-dual setting (3.1), we have:

P(w) ≥ P(w∗) ≥ −D(α∗) ≥ −D(α), (3.3)

where (w∗, α∗) are optimal solutions of (3.1). The property (3.3) leads to the
definition of the duality gap:

G(α, w) := P(w)− (−D(α)). (3.4)

The duality gap is a non-negative function and under strong duality it
reaches zero value only in an optimal pair (w∗, α∗). When f is differen-
tiable the conditions (3.2) imply:

w∗ = w(α∗) = ∇ f (Aα∗).

The duality gap is a certificate on approximation accuracy of variable α:

G(α, w) := P(w(α))− (−D(α)) ≥ P(w(α))− P(w∗).

Coordinate-wise duality gaps

Below we will show that for our problem structure, the duality gap can be
decomposed to the sum of non-negative coordinate-wise gaps. Here we as-
sume that w is chosen according to the first order optimality, w = ∇ f (Aα).
In the primal-dual setting (3.1), the duality gap is defined as

G(α) : = P(w(α))− (−D(α)) = P(w(α)) + D(α)

= f (Aα) + ∑
i

gi(αi) + f ∗(w(α)) + ∑
i

g∗i (−a>i w(α)). (3.5)

Since w = ∇ f (Aα), the Fenchel-Young inequality (Theorem 3.10) holds with
equality:

f ∗(w(α)) + f (Aα) = (Aα)>w(α) = ∑
i

αia>i w.

As a result the duality gap can be decomposed as a sum of the following
coordinate-wise gaps:

G(α) = ∑
i

Gi(αi) = ∑
i

(
g∗i (−a>i w) + gi(αi) + αia>i w

)
(3.6)

Each coordinate-wise gap Gi(αi) is non-negative due to Fenchel-Young in-
equality (Theorem 3.10).
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3. Preliminaries

3.3.3 Dual residuals

We base our fixed non-uniform and adaptive schemes on the concept of
”dual residual”, i.e. measure of progress to optimum for the dual variables
α. Here we assume that w = ∇ f (Aα).

Definition 3.11 (Dual Residual. A generalization of [4]) Consider the primal-
dual setting (3.1). Let each gi be µi-strongly convex with convexity parameter
µi ≥ 0 ∀i ∈ [n]. For the case µi = 0 we require gi to have a bounded support.
Then, given α, the i-th dual residue on iteration t is given by:

κ
(t)
i = u(t)

i − α
(t)
i ,

where u(t)
i ∈ ∂g∗i (−a>i w(t)) .

Remark 3.12 Note that for u to be well defined, i.e., the subgradient in (6) not to
be empty, we need the domain of g∗ to be the whole space. For µ > 0 this is given
by strong convexity of gi, while for µi = 0 this follows from the bounded support
assumption on gi.

Definition 3.13 (Coherent probability vector, [4]) We say that probability vec-
tor p(t) ∈ Rn is coherent with the dual residue vector κ(t) if for all i ∈ [n], we have
κ
(t)
i 6= 0 → p(t)i > 0.

Definition 3.14 (t-support set) We call set It:

It = {i ∈ [n] : κ
(t)
i 6= 0} ⊆ [n]

a t-support set.

Lemma 3.15 Suppose that for all i, g∗i is L-Lipschitz. Then, ∀i : |κi| ≤ 2L.

Proof According to Lemma 3.8, the L-Lipschitzness g∗i implies L-bounded
support of gi(αi) and therefore |αi| ≤ L. Moreover, by the equivalence of
Lipschitzness and bounded subgradient ([22], Lemma 2.6) we have |ui| ≤ L
and thus |κi| = |αi − ui| ≤ |αi|+ |ui| ≤ 2L. �

12



3.4. Stochastic Coordinate Descent algorithm

3.4 Stochastic Coordinate Descent algorithm

A formal definition of Stochastic Coordinate Descent (SCD) in the primal-
dual setting (3.1) is given in Algorithm 1 below. As can be seen, the algo-
rithm has 3 major steps. Firstly it randomly chooses the coordinate, sec-
ondly it is doing line-search on D(α) along the chosen coordinate, thirdly it
updates primal and dual variables. Note that all the steps of the algorithm
are fixed, except for the way of choosing the coordinate on step one. The
standard SCD chooses coordinates uniformly at random, in this thesis we
propose a different approach.

Algorithm 1 Stochastic Coordinate Descent

1: let α(0) = 0 ∈ Rn, w(0) = w(α(0))
2: for t = 0, 1, ...T do
3: Sample i ∈ [n] randomly
4: Find ∆αi minimizing D(α(t) + ei∆αi)
5: α(t+1) = α(t) + ei∆αi
6: w(t+1) = w(α(t+1))
7: end for

13





Chapter 4

Theoretical analysis of Stochastic
Coordinate Descent

In this chapter we introduce the necessary tools for the development of good
sampling distributions for the Stochastic Coordinate Descent (SCD) algo-
rithm. We start from generalizing ([4], Lemma 3) to apply to the setting of
general Lipschitz functions and allowing them to have non-uniform strong-
convexity constants. Further we use the generalized lemma to derive the
convergence guarantees for strongly convex and general convex scenarios.

We consider the pair of dual to each other empirical loss minimization prob-
lems. Our goal is to find a εP-suboptimal parameter w or εD-suboptimal
parameter α, i.e., P(w)− P(w∗) ≤ εP or D(α)− D(α∗) ≤ εD, for the follow-
ing pair of dual optimization problems:

min
α∈Rn

[
D(α) := f (Aα) + ∑

i
gi(αi)

]
,

min
w∈Rd

[
P(w) := f ∗(w) + ∑

i
g∗i (−a>i w)

]
.

For example, if we are given examples (A, y) or equivalently {(ai, yi)}n
i=1,

where ai ∈ Rd and yi ∈ {−1,+1}, we obtain the Support Vector Machine
(SVM) problem by setting g∗i (−a>i w) = max(0, 1− yia>i w), and f ∗(w) =
λ
2 ‖w‖2

2. We obtain the Lasso problem by setting f (Aα) = ‖y − Aα‖2
2 and

gi(αi) = λ|αi|.

4.1 Core lemma

In this section we develop a new lemma which states the relationship be-
tween any sampling distribution p and the convergence rate of SCD. This
lemma is a natural extension of ([4], Lemma 3) with relaxation of constraints

15



4. Theoretical analysis of Stochastic Coordinate Descent

on gi’s. While ([4], Lemma 3) is proven only for strongly convex gi with one
for all strong convexity constant µ, we derive the same convergence result
for the general convex gi with with coordinate-dependent strong convexity
constants µi. The new lemma allows us to derive the convergence rates of
SCD with adaptive sampling for common machine learning problems with
non-strongly convex gi, e.g. SVM and Lasso.

Lemma 4.1 Consider Stochastic Coordinate Descent. Let f be 1/β-smooth and
each gi be µi-strongly convex with convexity parameter µi ≥ 0 ∀i ∈ [n]. For the
case µi = 0 we require gi to have a bounded support. Then for any iteration t, any
sampling distribution pt and any arbitrary si ∈ [0, 1] ∀i ∈ [n] it holds that

E[D(α(t+1))|α(t)] ≤ D(α(t))−∑
i

si p
(t)
i Gi(α

(t))

−∑
i

p(t)i

(µi(si − s2
i )

2
−

s2
i ‖ai‖2

2β

)
|κ(t)i |

2,
(4.1)

here κ
(t)
i is i-th dual residual (see Def. 3.11).

Proof Since in SCD update (α(t+1) = α(t) + ei∆αi, see Algorithm 1) only one
coordinate per iteration is changed, the one iteration improvement in dual
objective can be written as:

D(α(t))− D(α(t+1)) =
[

gi(α
(t)
i ) + f (Aα(t))

]
︸ ︷︷ ︸

(A)

−
[

gi(α
(t+1)
i ) + f (Aα(t+1))

]
︸ ︷︷ ︸

(B)

.

To bound part (B) we use a suboptimal update ∆αi = siκ
(t)
i , for all si ∈ [0, 1]:

(B) = gi(α
(t+1)
i ) + f (Aα(t+1))

≤ min
∆αi

[
gi(α

(t)
i + ∆αi) + f (Aα(t) + ai∆αi)

]
≤ gi(α

(t)
i + siκ

(t)
i ) + f (Aα(t) + aisiκ

(t)
i ).

Each of gi is µi-strongly convex, therefore:

gi(α
(t)
i + siκ

(t)
i ) = gi(α

(t)
i + si(u

(t)
i − α

(t)
i ))

= gi(si(u
(t)
i ) + (1− si)(α

(t)
i ))

≤ sigi(u
(t)
i ) + (1− si)gi(α

(t)
i )− µi

2
si(1− si)(κ

(t)
i )2.

The function f is 1
β -smooth:

f (Aα(t) + aisiκ
(t)
i ) ≤ f (Aα(t)) +∇ f (Aα(t))>(siκ

(t)
i ai) +

1
2β
‖siκ

(t)
i ai‖2.

16



4.1. Core lemma

As a result:

(B) ≤ sigi(u
(t)
i )− sigi(α

(t)
i )− µi

2
si(1− si)(κ

(t)
i )2

+ gi(α
(t)
i ) + f (Aα(t))︸ ︷︷ ︸

(A)

+∇ f (Aα(t))>(siκ
(t)
i ai) +

1
2β
‖siκ

(t)
i ai‖2.

With obtained results above and optimality condition (3.2) w(α) = ∇ f (Aα),
the improvement in dual objective can be written as:

D(α(t))− D(α(t+1)) = (A)− (B)

≥ −sigi(u
(t)
i ) + sigi(α

(t)
i ) +

µi

2
si(1− si)(κ

(t)
i )2

−w(α(t))(siu
(t)
i ai) + w(α(t))(siα

(t)
i ai)−

1
2β
‖siκ

(t)
i ai‖2

= si

(
− gi(u

(t)
i ) + gi(α

(t)
i )−w(α(t))(ut−1

i ai)

+ w(α(t))(αt−1
i ai) +

µi

2
(1− si)(κ

(t)
i )2 − si

2β
‖ai‖2|κ(t)i |

2
)

.

Since u(t)
i ∈ ∂g∗i (−a>i w(α(t))), the Fenchel-Young inequality (3.10) becomes

equality for gi(u
(t)
i ):

gi(u
(t)
i ) + g∗i (−a>i w(α(t))) = −w(α(t))(u(t)

i ai)

Using this fact, the bound on the improvement in dual objective becomes:

D(α(t))− D(α(t+1)) ≥ si

(
gi(α

(t)
i ) + g∗i (−a>i w(α(t))) + w(α(t))(α

(t)
i ai)

+
µi

2
(1− si)(κ

(t)
i )2 − si

2β
‖ai‖2|κ(t)i |

2
)

Therefore for any si ∈ [0, 1] it holds that:

D(α(t))− D(α(t+1)) ≥ si

[
Gi(α

(t)) +
µi

2
(1− si)|κ(t)i |

2 − si

2β
‖ai‖2|κ(t)i |

2
]
, (4.2)

where Gi is i-th coordinate-wise duality gap:

G(α(t)) = ∑
i

Gi(α
(t)), Gi(α

(t)) = g∗i (−a>i w) + gi(α
(t)
i ) + α

(t)
i a>i w.

By taking an expectation of the both sides with respect to i, conditioned on
α(t), we obtain:

E[D(α(t+1))|α(t)] ≤ D(α(t))−∑
i

si p
(t)
i Gi(α

(t))

−∑
i

p(t)i

(µi(si − s2
i )

2
−

s2
i ‖ai‖2

2β

)
|κ(t)i |

2

and thus finalize the proof. �
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4. Theoretical analysis of Stochastic Coordinate Descent

Remark 4.2 If in addition to the conditions of Lemma 4.1 we require p(t) to be
coherent with κ(t), then for any θ ∈ [0, mini∈It p(t)i ] it holds that:

E[D(α(t+1))|α(t)] ≤ D(α(t))− θG(α(t)) +
θ2n2

2
F(t), (4.3)

where

F(t) =
1

n2βθ ∑
i∈It

( θ(µiβ + ‖ai‖2)

p(t)i

− µiβ
)
|κ(t)i |

2. (4.4)

Proof Since si in Lemma 4.1 is an arbitrary number ∈ [0, 1], we take si =
θ

p(t)i

for points with i ∈ It and si = 0 for all other points, here θ ∈ [0, mini p(t)i ].
The inequality (4.1) becomes:

E[D(α(t+1))|α(t)] ≤ D(α(t))− θ ∑
i∈It

Gi(α
(t))−∑

i∈It

(µiθ

2
− θ2

p(t)i

µiβ + ‖ai‖2

2β

)
|κ(t)i |

2

= −θG(α(t))− θ

2β ∑
i∈It

(
µiβ−

θ(µiβ + ‖ai‖2)

p(t)i

)
|κ(t)i |

2

and thus finalizes the proof. �

4.2 Strongly convex objectives

In this section we focus on finding optimal sampling distributions for prob-
lems of the form (3.1) with strongly convex functions gi. For instance, the
dual of the smoothed hinge loss SVM fits into this assumptions. For sim-
plicity reasons we drop the conditioning on α(t) in each of the expecta-
tions in this section, e.g. we use E[D(α(t)) − D(α(t+1))] when we mean
E[D(α(t))− D(α(t+1)) | α(t)].
To achieve a direct bound on the duality gap:

E[D(α(t))− D(α(t+1))] ≥ θG(α(t)) (4.5)

in (4.3) when µi > 0 we need
[

θ2n2

2 F(t) := θ
2β ∑i∈It

(
µiβ− θ(µi β+‖ai‖2)

p(t)i

)
|κ(t)i |2

]
to be non-positive. This can be achieved in two different ways:

• the first is to find θ and p which for all i satisfy:(
µiβ−

θ(µiβ + ‖ai‖2)

pt
i

)
≥ 0, (4.6)

in this case p and θ are constant during the whole optimization process.
We call importance sampling scheme the sampling scheme based on p
that maximizes θ in this case.
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4.2. Strongly convex objectives

• the second is to find θ(t) and p(t) which satisfy:(
θ

2β ∑
i

(
µiβ−

θ(µiβ + ‖ai‖2)

p(t)i

)
|κ(t)i |

2

)
≥ 0, (4.7)

in this case p(t) and θ(t) are changing every iteration. We call adap-
tive importance sampling scheme the sampling scheme based on p(t) that
maximizes θ(t) in this case.

Remark 4.3 Note that the parameter θ in (4.5) is directly related to the convergence
rate of SCD. Since it multiplicatively measures the improvement per step, our goal
is to find distributions which maximize θ.

Remark 4.4 (first way - importance sampling case) The condition (4.6) holds
when:

∀i ∈ [n] :
θ

pi
∈
[
0,

µiβ

µiβ + ‖ai‖2

]
.

To find a probability vector p which maximizes the convergence rate we need to
solve:

max θ

s.t. ∀i
θ

pi
∈
[
0,

µiβ

µiβ + ‖ai‖2

]
,

∑
i

pi = 1.

The solution is:

θimp :=
1

∑j
‖aj‖2+µjβ

µjβ

, pi :=
‖ai‖2+µi β

µi

∑j
‖aj‖2+µj β

µj

. (4.8)

Remark 4.5 (second way - adaptive importance sampling case) This case was
the central result in [4], here we cite its derivation for completeness and comparison
reasons. The condition (4.7) holds for:

θ(t) ≤ ∑i µiβ|κ(t)i |2

∑i(µiβ + ‖ai‖2)|κ(t)i |2(p(t)i )−1
.

The probability vector p(t) should maximize θ(t). Using the same approach as in [4]
we compute the optimal parameter θ

(t)
ada and the distribution:

p(t)j :=
|κ(t)j |

√
µjβ + ‖aj‖2

∑i |κ
(t)
i |
√

µiβ + ‖ai‖2
, (4.9)

θ
(t)
ada :=

∑i µiβ|κ(t)i |2(
∑i |κ

(t)
i |
√

µiβ + ‖ai‖2
)2 . (4.10)
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4. Theoretical analysis of Stochastic Coordinate Descent

Remark 4.6 (default case - uniform sampling) The case of uniform sampling
is a special case of Remark 4.4 with fixed probability distribution p, pi = 1/n. The
only unknown parameter left to find is θ. We need to find maximal θ which satisfies
(4.6) ∀i ∈ [1, n]: (

µiβ− θn(µiβ + ‖ai‖2)
)
≥ 0,

according to the inequality above θ should satisfy:

∀i θ ≤ µiβ

n(µiβ + ‖ai‖2)
.

As a result, the maximal possible θ for uniform sampling case is:

θunif = min
i∈[1,n]

(
µiβ

n(µiβ + ‖ai‖2)

)
. (4.11)

The following corollary will show that the adaptive importance sampling is
never worse then the importance sampling and that uniform is never better
than the non-uniform sampling schemes.

Corollary 4.7 Consider Stochastic Coordinate Descent. For any iteration t ≥ 0 it
holds that:

θunif ≤ θimp ≤ θ
(t)
ada.

Proof This fact directly follows from the settings of optimization problems
we solve in Remarks 4.4, 4.5 and 4.6. �

Using these probability distributions and inequality (4.3) we can find con-
vergence rates for SCD with importance and adaptive importance sampling
schemes:

E[D(α(t))− D(α(t+1))] ≥ E
[
θ(t)
(

P(w(α(t))) + D(α(t))
)]

= θ̂(t)E[P(w(α(t))) + D(α(t))]

≥ θ̂(t)E[D(α(t))− D(α∗)],

(4.12)

where θ̂(t) :=
E
[

θ(t)
(

P(w(α(t)))+D(α(t))
)]

E[P(w(α(t)))+D(α(t))]
.

By plugging in into (4.12) suboptimality ε
(t)
D := D(α(t))−D(α∗) and D(α(t))−

D(α(t+1)) = ε
(t)
D − ε

(t+1)
D we obtain:

E[ε
(t)
D − ε

(t+1)
D ] ≥ θ̂(t)E[ε

(t)
D ]

and finally

E[ε
(t+1)
D ] ≤ (1− θ̂(t))E[ε

(t)
D ] ≤ ε

(0)
D

t

∏
k=0

(1− θ̂(k)). (4.13)
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4.2. Strongly convex objectives

In SCD with uniform and importance sampling schemes θ̂(t) = θ is constant
during the whole optimization process (see (4.8), (4.11)). Therefore for them
we can easily find convergence rates and number of iterations required to
reach any given suboptimality:

E[ε
(t)
D ] ≤ (1− θ)tε

(0)
D ≤ exp

(
− tθ

)
ε
(0)
D . (4.14)

The number of iterations T required to get a suboptimality E[D(α(t)) −
D(α∗)] ≤ εD:

T ≥ 1
θ

log
( ε

(0)
D

εD

)
. (4.15)

By plugging in the corresponding θ in (4.14) and (4.15), we obtain:

• Uniform sampling

E[ε
(t)
D ] ≤ exp

(
− t min

i∈[1,n]

(
µiβ

n(µiβ + ‖ai‖2)

))
ε
(0)
D , (4.16)

Tunif ≥
log
(

ε
(0)
D

εD

)
mini∈[1,n]

(
µi β

n(µi β+‖ai‖2)

) . (4.17)

• Importance sampling

E[ε
(t)
D ] ≤ exp

(
−t

∑j
‖aj‖2+µjβ

µjβ

)
ε
(0)
D , (4.18)

Timp ≥∑
j

‖aj‖2 + µjβ

µjβ
log
( ε

(0)
D

εD

)
. (4.19)

As can be easily seen Timp ≤ Tunif.

Adaptive importance sampling. Since in adaptive importance sampling
scenario parameter θ̂(t) (4.10) changes with iteration, we cannot derive its
convergence rate in the same way as we did for schemes with constant θ.
However due to θimp ≤ θ

(t)
ada (see Corollary 4.7) for SCD with adaptive im-

portance sampling it holds that:

E[ε
(t)
D ] ≤ ε

(0)
D

t−1

∏
k=0

(1− θ
(k)
ada)

≤ ε
(0)
D

t−1

∏
k=0

(1− θ
(k)
ada)

≤ ε
(0)
D (1− θimp)

t.
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4. Theoretical analysis of Stochastic Coordinate Descent

Above we proved that SCD with adaptive importance sampling has a faster
convergence rate than SCD with the importance sampling, therefore Tada ≤
Timp ≤ Tunif.
To conclude, in this section we analyzed two sampling schemes for SCD -
importance and adaptive importance. New schemes were compared with
each other and with standard uniform sampling. The importance sampling
provides a better rate than uniform and adaptive importance outperforms
the importance sampling.

4.3 General convex objectives

In this section we propose several ways to improve the sampling scheme
of coordinate descent algorithm in the general convex case, i.e. when all
strong convexity parameters are zero (µi = 0). In this case the statement of
Remark 4.2 becomes:

E[D(α(t+1))|α(t)] ≤ D(α(t))− θG(α(t)) +
θ2n2

2
F(t), (4.20)

where

F(t) :=
1

n2β ∑
i∈It

( |κ(t)i |2‖ai‖2

p(t)i

)
. (4.21)

As could be seen, contrary to the strongly convex case, in the general convex
case F(t) is always positive and therefore the sampling distributions derived
in Section 4.2 are not optimal for general convex problems with general
convex gi, e.g. SVM and Lasso. In the following theorem we generalize
([32], Theorem 5) and ([5], Theorem 9) where only cases of sampling with
particular fixed distributions are considered and find the convergence rate
for an arbitrary chosen adaptive sampling distribution.

Theorem 4.8 Consider Stochastic Coordinate Descent. Assume f is 1
β -smooth

function. Then, if g∗i is Li-Lipschitz for each i and p(t) is coherent with κ(t), it
suffices to have a total number of iterations of

T ≥ max

{
0,

1
pmin

log
( 2ε0

D
n2 pminF◦

)}
+

5F◦n2

ε
− 1

pmin
(4.22)

or alternatively

T ≥ 5F′◦n2

ε
− 1

pmin
(4.23)

to obtain a duality gap G(ᾱ) ≤ ε. Moreover, when t ≥ T0 with

T0 = max

{
0,

1
pmin

log
( 2ε0

D
n2 pminF◦

)}
+

4F◦n2

ε
− 2

pmin
(4.24)
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4.3. General convex objectives

or alternatively

T0 =
4F′◦n2

ε
− 2

pmin
(4.25)

we have the suboptimality bound of E[D(α(t))− D(α?)] ≤ ε/2, where ε0
D is the

initial dual suboptimality and F◦ is an upper bound on E[F(t)] taken over all coor-

dinates at 1, . . . , T algorithm iterations and F′◦ := F◦ + ε
(0)
D

n2 pmin
.

Proof From Remark 4.2 we know:

E[D(α(t+1))|α(t)] ≤ D(α(t))− θG(α(t)) +
θ2n2

2
F(t) (4.26)

With D(α(t))−D(α(t+1)) = ε
(t)
D − ε

(t+1)
D and ε

(t)
D = D(α(t))−D(α∗) ≤ G(α(t)),

this implies:

E[ε
(t+1)
D |α(t)] ≥ ε

(t)
D − θε

(t)
D +

θ2n2

2
F(t)

by taking unconditional expectation over all iterations and using definition
of F◦ we obtain:

E[ε
(t+1)
D ] ≤ (1− θ)E[ε

(t)
D ] +

θ2n2

2
E[F(t)]

≤ (1− θ)E[ε
(t)
D ] +

θ2n2

2
F◦

Now we will show using induction that we can bound the dual suboptimal-
ity as:

E[ε
(t)
D ] ≤ 2F◦n2

2
pmin

+ t− t0
, (4.27)

where t ≥ t0 = max
{

0, 1
pmin

log
( 2ε0

D
n2 pminF◦

)}
. Indeed, let’s choose θ = pmin,

then the basis of induction at t = t0 is verified as:

E[ε
(t)
D ] ≤ (1− pmin)

tε
(0)
D +

t−1

∑
i=0

(1− pmin)
i p2

minn2 F◦

2

≤ e−tpmin ε
(0)
D + n2 pmin

F◦

2
≤ n2 pminF◦.

Note that if in (4.27) instead of F◦ we take F′◦ := F◦ + ε
(0)
D

n2 pmin
, the condition

holds with t0 = 0:

E[ε
(t)
D ] ≤ 2F′◦n2

2
pmin

+ t
.
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4. Theoretical analysis of Stochastic Coordinate Descent

Now let’s prove the inductive step, for t > t0. Suppose claim holds for t− 1,
then

E[ε
(t)
D ] ≤ (1− θ)E[ε

(t−1)
D ] + θ2n2 F◦

2

≤ (1− θ)
2F◦n2

2
pmin

+ (t− 1)− t0
+ θ2n2 F◦

2
,

choosing θ = 2
2

pmin
+t−1−t0

≤ pmin yeilds:

E[ε
(t)
D ] ≤

(
1− 2

2
pmin

+ t− 1− t0

)
2F◦n2

2
pmin

+ (t− 1)− t0

+

(
2

2
pmin

+ t− 1− t0

)2
F◦n2

2

=

(
1− 2

2
pmin

+ t− 1− t0

)
2F◦n2

2
pmin

+ (t− 1)− t0

+

(
1

2
pmin

+ t− 1− t0

)
2F◦n2

2
pmin

+ (t− 1)− t0

=

(
1− 1

2
pmin

+ t− 1− t0

)
2F◦n2

2
pmin

+ (t− 1)− t0

=
2F◦n2

2
pmin

+ (t− 1)− t0

( 2
pmin

+ t− 2− t0

2
pmin

+ t− 1− t0

)

≤ 2F◦n2

2
pmin

+ t− t0
.

This proves the bound (4.27) on suboptimality. To bound the duality gap we
sum the inequality (4.26) over the interval t = T0 + 1, ..., T and obtain

E[D(α(T0))−D(α(T))] ≥ θE
[ T

∑
t=T0+1

D(α(t−1))+ P(w(t−1))
]
− (T−T0)

θ2n2

2
F◦,

by rearranging terms and choosing w̄ and ᾱ to be the average vectors over
t ∈ {T0, T − 1} we get:

E[G(ᾱ)] = E[D(ᾱ) + P(w̄)] ≤ E[D(α(T0))− D(α(T))]

θ(T − T0)
+ θn2 F◦

2
.

If T ≥ 1
pmin

+ T0 and T0 ≥ t0, we can set θ = 1/(T − T0) and combining this
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4.3. General convex objectives

with (4.27) we get:

E[G(ᾱ)] ≤ E[D(α(T0))− D(α(T))] +
F◦n2

2(T − T0)

≤ E[D(α(T0))− D(α∗)] +
F◦n2

2(T − T0)

≤ 2FTn2

2
pmin

+ t− t0
+

F◦n2

2(T − T0)
.

A sufficient condition to bound the duality gap by ε is that T0 ≥ t0 − 2
pmin

+
4F◦n2

ε and T ≥ T0 +
F◦n2

ε which also implies E[D(α(T0))−D(α∗)] ≤ ε/2. Since
we also need T0 ≥ t0 and T − T0 ≥ 1

pmin
, the overall number of iterations

should satisfy:

T0 ≥ max
{

t0,
4FTn2

ε
− 2

pmin
+ t0

}
and T − T0 ≥ max

{ 1
pmin

,
F◦n2

ε

}
.

Using a + b ≥ max(a, b) we finally can bound the total number of required
iterations to reach a duality gap of ε by:

T ≥ T0 +
1

pmin
+

F◦n2

ε

≥ t0 +
4F◦n2

ε
− 1

pmin
+

F◦n2

ε

= t0 +
5F◦n2

ε
− 1

pmin

.

This concludes the proof. �

Remark 4.9 We recover ([5], Theorem 9) as a special case of Theorem 4.8 by setting
p(t)i = 1

n . We recover ([32], Theorem 5) by setting p(t)i = Li
∑j Lj

1.

4.3.1 Maximizing convergence rate in case of infinitesimal ε

The inequalities (4.22) and (4.24) claim that the number of iterations is di-
rectly related to F◦. Indeed, if we take a limit ε → 0, then the only signifi-
cant term in (4.22) is the one dependent on ε, i.e. 5F◦n2

ε . To achieve a better
convergence speed we have to find a distribution p(t) which minimizes the
F◦. Below we derive optimal adaptive and non-adaptive distributions to
minimize F(t) and consequently F◦.
By definition:

F(t) :=
1

n2β ∑
i

( |κ(t)i |2‖ai‖2

pt
i

)
.

1this distribution is a Lipschitz-variant of our ”importance sampling” (4.29) distribution
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4. Theoretical analysis of Stochastic Coordinate Descent

From Lemma 3.15 we know that if each g∗i is Li-Lipschitz, then |κi| = |αi −
ui| ≤ 2L. Let’s first find what F(t) value we achieve with uniform sampling
pt

i = 1/n:

F(t) =
1

n2β ∑
i

( |κ(t)i |2‖ai‖2

1/n

)
≤ 4

β ∑
i

L2
i ‖ai‖2

n
.

Now let us find an adaptive probability distribution which minimizes F(t),
where |κ(t)i |2‖ai‖2 = c2

i :

min
p ∑

i

c2
i

pi

s.t. ∑
i

pi = 1

We define the Lagrangian:

L(p, η) = ∑
i

c2
i

pi
− η(∑

i
pi − 1)→ min

The optimality conditions are:

∀i, ∀j ∈ [n]→
c2

i
p2

i
=

c2
j

p2
j
,

∑
i

pi = 1.

The solution is

p(t)i :=
ci

∑j cj
=
|κ(t)i |‖ai‖

∑j |κ
(t)
j |‖aj‖

. (4.28)

Now let us put derived distribution into the initial expression for F(t) and
find the target upper bound:

F(t) =
1

n2β ∑
i

( |κ(t)i |2‖ai‖2

pt
i

)
=

1
β ∑

i

( |κ(t)i |‖ai‖
n

)
∑

j

( |κ(t)j |‖aj‖
n

)

=
1
β

(
∑

i

|κ(t)i |‖ai‖
n

)2
≤ 4

β

(
∑

i

Li‖ai‖
n

)2
.

To find an optimal probability distribution which does not depend on dual
residuals, we solve the same opimization problem as in adaptive case, but
instead of ”true” F(t) we minimize its independent of dual-residuals upper

bound F̄ := 4
n2β ∑i

(
L2

i ‖ai‖2

pt
i

)
.

F(t) =
1

n2β ∑
i

( |κi|2‖ai‖2

pt
i

)
≤ 4

n2β ∑
i

(L2
i ‖ai‖2

pt
i

)
= F̄.
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4.3. General convex objectives

The solution is to choose the sampling probabilities proportional to Li‖ai‖:

pi :=
Li‖ai‖

∑j Lj‖aj‖
, (4.29)

we call this sampling distribution ”importance sampling” analogously to the
strongly convex case. We achieve the same upper bound on F(t) as with the
adaptive sampling:

F(t) =
1

n2β ∑
i

( |κi|2‖ai‖2

pt
i

)
=

1
β ∑

i

( |κi|2‖ai‖
Lin

)
∑

j

(Lj‖aj‖
n

)

≤ 4
β

(
∑

i

Li‖ai‖
n

)(
∑

i

Li‖ai‖
n

)
≤ 4

β

(
∑

i

Li‖ai‖
n

)2
.

As a result, analogously to the strongly convex case we found adaptive and
fixed sampling distributions, which minimize the upper bound on the num-
ber of iterations required to get an infinitesimal suboptimality.
Summary:

• Uniform sampling case:

pi :=
1
n

; F◦unif ≥ E

[
1
β ∑

i

( |κ(t)i |2‖ai‖2

n

)]
;

F(t) ≤ Funif :=
4
β ∑

i

L2
i ‖ai‖2

n

• Importance sampling case:

pi :=
Li‖ai‖

∑j Lj‖aj‖
; F◦imp ≥ E

[
1
β ∑

i

( |κ(t)i |2‖ai‖
Lin

)
∑

j

(Lj‖aj‖
n

)]
;

F(t) ≤ Fimp :=
4
β

(
∑

i

Li‖ai‖
n

)2

• Adaptive importance sampling case:

p(t)i :=
ci

∑j cj
=
|κ(t)i |‖ai‖

∑j |κ
(t)
j |‖aj‖

; F◦ada ≥ E

[
1
β

(
∑

i

|κ(t)i |‖ai‖
n

)2
]

;

F(t) ≤ Fada :=
4
β

(
∑

i

Li‖ai‖
n

)2

Remark 4.10 The inequality
(

∑i
Li‖ai‖

n

)2
≤ ∑i

L2
i ‖ai‖2

n is a direct consequence
of the Cauchy-Schwarz inequality, therefore the adaptive and importance sampling
schemes always give a better lower bound on F(t) than uniform sampling.
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4. Theoretical analysis of Stochastic Coordinate Descent

4.3.2 Comparison with uniform sampling

Note that Theorem 4.8 states that the number of iterations sufficient to get
an ε-optimal duality gap (4.22) does not depend on sampling probabilities of
points out of the set It at step t. Therefore sampling schemes which sample
only from the t-support set have an advantage over uniform sampling in the
convergence speed due to the increased pmin and lower bound on F(t).
Let’s assume that the size of the t-support set never exceeds some m ∈ [1, n]
and compare two sampling methods:

• Uniform sampling: p(t)i = 1
n .

pmin = 1
n , F(t) = 1

n2β ∑i∈It

(
|κ(t)i |

2‖ai‖2

p(t)i

)
= 1

nβ ∑i∈It
|κ(t)i |2‖ai‖2 ≤ Funif

Number of iterations according to (4.22): T ≥ max

{
0, n log

(
2ε0

D
nFunif

)}
+

5n2Funif
ε

• Support set uniform: {
p(t)i = 1

m , if κ
(t)
i 6= 0

p(t)i = 0, otherwise
(4.30)

pmin = 1
m , F(t) = 1

n2β ∑i∈It

(
|κ(t)i |

2‖ai‖2

p(t)i

)
= m

n2β ∑i∈It
|κ(t)i |2‖ai‖2 ≤ m

n Funif

Number of iterations according to (4.22): T ≥ max

{
0, m log

(
2ε

(0)
D

nFunif

)}
+

5nmFunif
ε

If we define Tp(ε) = max

{
0, log

(
2ε

(0)
D

nFunif

)}
+ 5nFunif

ε , then with uniform sam-

pling we reach desired duality gap in nTp(ε) iterations and with the support
set sampling in mTp(ε) iterations. In practice we have observed m ∼ 0.1n
for several realistic Lasso experiments, in that case, support set uniform
sampling can provide a 10-fold improvement over uniform sampling.

4.3.3 Maximizing convergence speed in case of constant ε

While we already derived distributions for the theoretical case of infinitesi-
mal ε in Section 4.3.1, in practice we run the method until we achieve some
constant accuracy (e.g. ε ∼ 10−6). In this case in (4.22) the term containing

1
pmin

log
(

2ε0
D

n2 pminF◦

)
is not negligible compared to the term 5F◦n2

ε and we need
to consider distributions which minimize the whole expression in (4.22). To
see the importance of this, consider the case when the values of the dual
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4.3. General convex objectives

residuals κi have very high variance, in this case some points in adaptive
distribution (4.28) have extreme values, e.g. 1

pmin
∼ F◦n3. In this case the

inequality (4.22) becomes:

T ≥ F◦n3 log(2nε0
D) +

5F◦n2

ε
,

which shows that for n ∼ ε−1 the independent of ε term has a non-negligible
impact on T.
To find sampling distributions which minimize the whole bound on T we
will use the bound (4.23):

T ≥ 5F◦n2

ε
+

ε
(0)
D

εpmin
. (4.31)

Below we consider an approach to find an optimal distribution based on
mixing adaptive distribution (4.28) with uniform (4.30).

Mixture of uniform and adaptive

The number of iterations T is directly proportional to F◦ and 1/pmin. There-
fore, the optimal distribution p should minimize F◦ and 1/pmin at the same
time. As was shown above, the optimal distribution minimizing F◦ is given
by (4.28) and the distribution minimizing 1/pmin is given by (4.30). Below
we are finding a mix of the two aforementioned distributions which mini-
mize the T in (4.31). We define mixed distribution as:p(t)i = σ

m + (1− σ)
|κ(t)i |‖ai‖

∑j |κ
(t)
j |‖aj‖

, if κ
(t)
i 6= 0

p(t)i = 0, otherwise
(4.32)

where σ ∈ [0, 1]. This distribution gives us the following bounds on F◦ and
1/pmin:

F◦mix ≥
F◦ada

1− σ

1
pmin

≥ m
σ

,

and bound on the number of iterations:

T ≥
5F◦adan2

ε(1− σ)
+

ε
(0)
D m
εσ

. (4.33)

Since the process of finding F◦ada is rather problematic, a good σ can be found
by replacing F◦ada with its upper bound Fada and minimizing (4.33). Another
option is to use a ”safe” choice of σ = 0.5, which provides a balance between
two distributions and guarantees decent convergence in case of unknown
F◦ada. In the applications section below (Chapter 5) we use the latter option
and call this sampling variant ada-uniform sampling.
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4. Theoretical analysis of Stochastic Coordinate Descent

4.3.4 Gap-wise sampling

In this subsection we develop the theory and convergence rates of SCD with
gap-wise sampling, i.e. sampling each coordinate according to its duality
gap. This chapter is motivated by the paper [18] where the gap-wise sam-
pling distribution proved to be the optimal in the Structured Support Vector
Machine (SSVM) problem. We start by deriving the convergence theorem
and then we compare the obtained rate with ones developed in previous
subsections.

Definition 4.11 (Nonuniformity measure, [18]) The nonuniformity measure χ(x)
of a vector x ∈ Rn, is defined as:

χ(x) :=
√

1 + n2Var[p],

where p := x
‖x‖1

is the probability vector obtained by normalizing x.

Lemma 4.12 Let x ∈ Rn
+. The following relation holds:

‖x‖2 =
χ(x)√

n
‖x‖1.

Proof. It directly follows from:

Var[p] = E[p2]−E[p]2 =
1
n
‖p‖2

2 −
1
n2 .

and Def. 4.11.

Theorem 4.13 Consider Stochastic Coordinate Descent. Assume f is 1
β -smooth

function. Then, if g∗i is Li-Lipschitz for each i and p(t)i := Gi(α
(t))

G(α(t))
then on each

iteration it holds that

E[ε
(t+1)
D ] ≤

C + 2nε
(0)
D

t + 2n + 1
, (4.34)

where C is an upper bound on E
[

2nχ(
−→
F )∑i ‖ai‖2|κ(t)i |

2

(χ(
−→
G ))3β

]
, where the expectation is

taken over the random choice of the sampled coordinate at iterations 1, . . . , t of the
algorithm. Here

−→
G and

−→
F are defined as:

−→
G := (Gi(α

(t)))n
i=1,

−→
F := (‖ai‖2|κ(t)i |

2)n
i=1.

Proof We start from the result (4.1) of Lemma 4.1 when µi = 0:

E[D(α(t+1))|α(t)] ≤ D(α(t))−∑
i

si p
(t)
i Gi(α

(t)) + ∑
i

p(t)i
s2

i ‖ai‖2

2β
|κ(t)i |

2,
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4.3. General convex objectives

by regrouping the elements and subtracting the optimal function value D(α∗)
from both sides we obtain:

E[D(α(t+1))−D(α∗)|α(t)] ≤ D(α(t))−D(α∗)−∑
i

si p
(t)
i Gi(α

(t))+∑
i

pt
i s

2
i

2β
‖ai‖2|κ(t)i |

2.

With ε
(t)
D := D(αt)− D(α∗):

E[ε
(t+1)
D |α(t)] ≤ ε

(t)
D −∑

i
si p

(t)
i Gi(α

(t)) + ∑
i

p(t)i s2
i

2β
‖ai‖2|κ(t)i |

2.

We take p(t)i := Gi(α
(t))

G(α(t))
and si := s, then:

E[ε
(t+1)
D |α(t)] ≤ ε

(t)
D −

s
G(α(t))

∑
i
(Gi(α

(t)))2 +
s2

2βG(α(t))
∑

i
Gi(α

(t))‖ai‖2|κ(t)i |
2.

To simplify the following derivation we define a duality gap vector
−→
G :=

(Gi(α
(t)))n

i=1 and residual vector
−→
F := (‖ai‖2|κ(t)i |2)n

i=1, the inequality be-
comes:

E[ε
(t+1)
D |α(t)] ≤ ε

(t)
D −

s
G(α(t))

‖−→G ‖2
2 +

s2

2βG(α(t))
〈−→G ,
−→
F 〉.

By bounding the last term using the Cauchy-Schwarz inequality 〈−→G ,
−→
F 〉 ≤

‖−→G ‖2‖
−→
F ‖2 and using Lemma 4.12 we obtain:

E[ε
(t+1)
D |α(t)] ≤ ε

(t)
D −

s
G(α(t))

‖−→G ‖2
2 +

s2

2βG(α(t))
‖−→G ‖2‖

−→
F ‖2

= ε
(t)
D −

sG(α(t))(χ(
−→
G ))2

n
+

s2χ(
−→
G )χ(

−→
F )∑i ‖ai‖2|κ(t)i |2

2nβ

≤ ε
(t)
D − ε

(t)
D
(χ(
−→
G ))2s
n

+
s2χ(
−→
G )χ(

−→
F )∑i ‖ai‖2|κ(t)i |2

2nβ

=
(

1− (χ(
−→
G ))2s
n

)
ε
(t)
D +

s2χ(
−→
G )χ(

−→
F )∑i ‖ai‖2|κ(t)i |2

2nβ
.

In the third line we have used weak duality, that is G(α(t)) ≥ ε
(t)
D . Analo-

gously to the proof of Theorem 4.8 we now prove that the suboptimality is
bounded by:

E[ε
(t)
D ] ≤

2n(C + ε
(0)
D )

t + 2n + 1
, (4.35)

where

C ≥ E
[2nχ(

−→
F )∑i ‖ai‖2|κ(t)i |2

(χ(
−→
G ))3β

]
.
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4. Theoretical analysis of Stochastic Coordinate Descent

The basis of induction at t = 0 obviously follows from the non-negativity of
C.
Now let us prove the induction step, assume that condition (4.35) holds at
step t, then by taking s := 2n

(t+2n)(χ(
−→
G ))2

we get:

E[ε
(t+1)
D |α(t)] ≤

(
1− (χ(

−→
G ))2s
n

)
ε
(t)
D +

s2χ(
−→
G )χ(

−→
F )∑i ‖ai‖2|κ(t)i |2

2nβ

≤
(

1− 2
(t + 2n)

)2n(C + ε
(0)
D )

t + 2n
+

2nχ(
−→
F )∑i ‖ai‖2|κ(t)i |2

β(t + 2n)2(χ(
−→
G ))3

.

(4.36)

By taking an unconditional expectation of (4.36) and bounding by Ĉ :=
C + ε

(0)
D we obtain:

E[ε
(t+1)
D ] ≤

(
1− 2

(t + 2n)

) 2nĈ
t + 2n

+
2n

(t + 2n)2 E

[
χ(
−→
F )∑i ‖ai‖2|κ(t)i |2

β(χ(
−→
G ))3

]
≤
(

1− 2
(t + 2n)

) 2nĈ
t + 2n

+
2nĈ

(t + 2n)2

=
2nĈ

t + 2n

(
1− 2

(t + 2n)
+

1
(t + 2n)

)
=

2nĈ
t + 2n

t + 2n− 1
t + 2n

≤ 2nĈ
t + 2n

t + 2n
t + 2n + 1

=
2nĈ

t + 2n + 1
.

And this concludes the proof. �

4.3.5 Theoretical comparison of different sampling schemes

Here we compare the rates obtained by Theorem 4.13 for gap-wise sampling
and Theorem 4.8 for uniform sampling. Recall that according to the Theo-
rem 4.8 the rate for any distribution is:

E[ε
(t)
D ] ≤ 2F′◦n2

2
pmin

+ t
=

2
β E
[

∑i
|κ(t)i |

2‖ai‖2

pt
i

]
+

2ε
(0)
D

pmin

2
pmin

+ t
.

For the uniform distribution (pi = 1/n) this gives:

E[ε
(t)
D ] ≤

2n
β E
[

∑i |κ
(t)
i |2‖ai‖2

]
+ 2nε

(0)
D

2n + t
. (4.37)
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4.3. General convex objectives

The rate of gap-wise sampling depends on non-uniformity measures χ(
−→
G )

and χ(
−→
F ):

E[εt
D] ≤

2nE
[

χ(
−→
F )

(χ(
−→
G ))3β

∑i |κ
(t)
i |2‖ai‖2

]
+ 2nε

(0)
D

2n + t
.

In the best case for gap-wise sampling the variance in (|κ(t)i |2‖ai‖2)n
i=1 is 0,

χ(
−→
F ) ≈ 1, and variance of gaps is maximal χ(

−→
G ) ≈

√
n, if this holds, the

rate becomes:

E[ε
(t)
D ] ≤

2
β
√

n E
[

∑i |κ
(t)
i |2‖ai‖2

]
+ 2nε

(0)
D

2n + t
.

In the worst case scenario when variance is maximal in (|κ(t)i |2‖ai‖2)n
i=1,

χ(
−→
F ) ≈

√
n, the rate of gap-wise sampling is better than of uniform only

when the gaps are non-uniform enough i.e., χ(
−→
G ) ≥ n

1
6 .
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Chapter 5

Applications

In this chapter, we adopt the sampling distributions derived in the previous
chapter and propose algorithms for two particular machine learning prob-
lems - smoothed hinge loss SVM and Lasso (L1-regularized least squares
linear regression).

5.1 Smoothed hinge loss SVM

The smoothed hinge loss SVM is a typical problem with strongly convex reg-
ularizer. This problem will be used as an application of theory developed in
Section 4.2.

Primal SVM problem:

min
w∈Rd

P(w) :=
1
n

n

∑
i=1

ϕi(a>i w) +
λ

2
‖w‖2

2. (5.1)

Dual problem:

min
α∈Rn

D(α) := − 1
n

n

∑
i=1

ϕ∗i (−αi) +
λ

2

∥∥∥ 1
λn

n

∑
i=1

αiai

∥∥∥2

2
. (5.2)

Here ϕi(.) is a smoothed version of hinge loss, defined as:

ϕi(x) = max
v∈[−1,0]

[
vxyi − v− 1

2
v2
]
.

The conjugate of the smooth hinge loss is ϕ∗i (αi) = αiyi +
1
2 α2

i . As can be
seen, the problems (5.1, 5.2) are stated in our primal-dual setting (3.1) with
g∗i (−a>i w) = 1

n ϕi(a>i w), and f ∗(w) = λ
2 ‖w‖2

2.
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5. Applications

5.1.1 Duality gap

According to the first-order optimality conditions (3.2), in optimum w is:

w(α) =
1

λn

n

∑
i=1

αiai,

this gives the following expression for the duality gap, in terms of a given
iterate α:

G(α) = P(w(α))− (−D(α)) =
1
n

n

∑
i=1

(
ϕi(a>i w)− ϕ∗i (−αi)

)
+ λ‖w‖2

2.

We can rewrite it as a sum of non-negative coordinate-wise gaps, as we
discussed above in Section 3.3.2:

G(α) =
1
n

n

∑
i=1

(
ϕi(a>i w)− ϕ∗i (−αi)

)
+ λ‖w‖2

2

=
1
n

n

∑
i=1

(
ϕi(a>i w)− ϕ∗i (−αi)

)
+ λw>

1
λn

n

∑
i=1

αiai

=
1
n

n

∑
i=1

(
ϕi(a>i w)− ϕ∗i (−αi) + a>i αiw

)
.

Using the definition of ϕ∗i (αi), we finally obtain:

G(α) =
n

∑
i=1

Gi(α) =
1
n

n

∑
i=1

(
ϕi(a>i w)− αiyi +

1
2

α2
i + w>αiai

)
.

5.1.2 Algorithms

In this subsection we propose 4 variants of sampling schemes for Stochastic
Coordinate Descent (SCD) for solving the dual smoothed hinge loss SVM.
They are:

• uniform - basic SDCA algorithm from [28] adapted to our primal-dual
setting. Discussed in Remark 4.6.

• importance - non-uniform fixed sampling scheme. Discussed and de-
fined in Remark 4.4. In our case β := n, µi := λ.

• adaptive - the algorithm of Csiba et al. (2015) [4] adapted to our setting.
Discussed in Remark 4.5.

• (heuristic) - adaptive+ the practical version of adaptive with lower per-
iteration computational complexity. It was also introduced in [4].

36



5.1. Smoothed hinge loss SVM

Algorithm 2 Stochastic Dual Coordinate Descent (uniform & importance)

1: Choose mode ∈ [uniform, importance]
2: let α(0) = 0, w(0) = 0
3: switch mode do
4: case uniform
5: pi =

1
n

6: case importance
7: pi =

‖ai‖2+nλ

∑j ‖aj‖2+nλ

8: for t = 0,1,... do
9: sample j from [n] according to distribution p

10: ∆αj = yj max
(

0, min
(

1,
1−yja>j w(t)−yiα

(t)
j

‖aj‖2/(λn)+1 + yjα
(t)
j

))
− α

(t)
j

11: α(t+1) = α(t) + ∆αjej

12: w(t+1) = w(t) + (λn)−1∆αjaj
13: end for
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5. Applications

Algorithm 3 Stochastic Dual Coordinate Descent (adaptive & adaptive+)

1: Choose mode ∈ [adaptive, adaptive+]
2: choose parameter m > 1 (empirically)
3: let α(0) = 0, w(0) = 0
4: for t = 0,1,... do
5: switch mode do
6: case adaptive+
7: if mod(t, n) == 0 then
8: goto 13
9: else

10: p(t) = p(t−1)

11: end if
12: case adaptive
13: calculate κ

(t)
j = α

(t)
j +∇ϕi(a>i w(t)), ∀j ∈ [n]

14: generate adapted probabilities distribution p(t):

p(t)j =
|κ(t)j |

√
λn + ‖aj‖2

∑i |κ
(t)
i |
√

λn + ‖ai‖2

15: sample j from [n] according to distribution p

16: ∆αj = yj max
(

0, min
(

1,
1−yja>j w(t)−yiα

(t)
j

‖aj‖2/(λn)+1 + yjα
(t)
j

))
− α

(t)
j

17: α(t+1) = α(t) + ∆αjej

18: w(t+1) = w(t) + (λn)−1∆αjaj

19: p(t)j = p(t)j /m
20: end for

5.2 Lasso

The Lasso is a typical problem with general convex regularizer. This prob-
lem will be used as an application of theory developed in Section 4.3. Given
a data matrix A = [a1, . . . , an] and right hand side vector y, the Lasso prob-
lem is stated as:

min
α∈Rd

1
2n

n

∑
i=1

(〈α, ai〉 − yi)
2 + λ‖α‖1,

or alternatively

min
α∈Rd

1
2n
‖Aα− y‖2

2 + λ‖α‖1. (5.3)
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5.2. Lasso

The problem can easily be reformulated in our primal-dual setting (3.1):

min
α∈Rn

[
D(α) := f (Aα) + ∑

i
gi(αi)

]
,

min
w∈Rd

[
P(w) := f ∗(w) + ∑

i
g∗i (−a>i w)

]
.

Here f (Aα) = 1
2n‖Aα− y‖2

2 and gi(αi) = λ|αi|.

5.2.1 Lipschitzing trick

In order to have duality gap convergence guarantees (Theorem 4.8) we need
g∗i to be Lipschitz continuous, however it is not the case for the conjugate of
the absolute value function gi = |.|. We modify the function gi without af-
fecting the iterate sequence of SCD using ”Lipschitzing trick” from [5]. This
method is described below.

According to Lemma 3.8, for a proper function gi having bounded support
is equivalent with g∗i being Lipschitz continuous. We modify gi(αi) = λ|αi|
by restricting its support to the interval with radius B := 1

λ ( f (Aα(0)) +

λ‖α(0)‖1). Since Algorithm 1 is monotone, we can choose B big enough
to guarantee that α will stay inside the ball during optimization, and that
the algorithm’s iterate sequence will not be affected. By modifying gi to be
bounded by B, we guarantee g∗i to be B-Lipschitz continuous.

ḡi(αi) =

{
λ|αi|, if |αi| ≤ B
+∞, otherwise

The ḡi-conjugate will be:

ḡ∗i (ui) = max
αi :|αi |≤B

uiαi − λ|αi| = B
[
|ui| − λ

]
+

.

5.2.2 Duality gap

Using gap decomposition equation (3.6) we obtain coordinate-wise duality
gaps for modified Lasso, which now depends on the chosen parameter B:

G(α) = ∑
i

Gi(αi) = ∑
i

(
g∗i (−a>i w) + gi(αi) + αia>i w

)
= ∑

i

(
B
[
|a>i w| − λ

]
+
+ λ|αi|+ αia>i w

)
.

(5.4)
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5. Applications

5.2.3 Algorithms with fixed sampling

In this subsection we give the coordinate descent algorithms with sampling
schemes with fixed probabilities which we derived the in previous chapter.
The basic Stochastic Coordinate Descent (Algorithm 1) with uniform sam-
pling for Lasso was presented in ([24], Algorithm 1). Here we give this algo-
rithm along with its enhanced fixed non-uniform sampling versions of im-
portance sampling (see (4.29)) and heuristic gap-init sampling, which is based
on initial coordinate-wise duality gaps.

To describe the algorithm the ”soft-threshold” function sτ(w) is defined:

sτ(w) := sign(w)(|w| − τ)+ = sign(w)max
{
|w| − τ, 0

}

Algorithm 4 Stochastic Coordinate Descent

1: let α(0) = 0, w(0) = ∇ f (Aα(0))
2: for t = 0,1,... do
3: sample j from [d] according to distribution p
4: let zj = (∇ f (α(t)))j

5: α
(t+1)
j = sλ(α

(t)
j − zj)

6: w(t+1) = ∇ f (Aα(t+1))
7: end for

The name of the algorithm depends on type of sampling distribution p:

• uniform pi =
1
d

• importance pi =
Li‖ai‖

∑j Lj‖aj‖ (defined in (4.29))

• (heuristic) gap-init (defined according to (5.4))

pi =
G(0)

i

∑j G(0)
j

=
B
[
|a>i w(0)| − λ

]
+
+ λ|α(0)

i |+ α
(0)
i a>i w(0)

∑j

(
B
[
|a>j w(0)| − λ

]
+
+ λ|α(0)

j |+ α
(0)
j a>j w(0)

)
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5.2. Lasso

5.2.4 Algorithms with adaptive sampling

In this subsection we consider Stochastic Coordinate Descent with adaptive
sampling schemes. Here we present 5 different schemes, 4 of them are sup-
ported by the theory in the previous chapter and ada-division is a heuristic
proposed in [4] as AdaSDCA+ and adapted by us to Lasso problem:

• supportSet-uniform discussed in Section 4.3.2, defined in (4.30).

• ada-uniform discussed in Section 4.3.3, defined in (4.32).

• ada-gap discussed in Section 4.3.4, defined in Theorem 4.13.

• adaptive discussed in Section 4.3.1, defined in (4.28).

• (heuristic) ada-division is a heuristic, which tries to resemble adaptive
with less computational complexity.

The algorithms with aforementioned sampling schemes are given below:

Algorithm 5 Stochastic Coordinate Descent (supportSet-uniform)

1: let α(0) = 0, w(0) = ∇ f (Aα(0))
2: for t = 0,1,... do
3: calculate absolute values of dual residuals |κ(t)j | for all j ∈ [d]

|κ(t)j | =
∣∣∣αj − B · sign(a>i w(t)) ·

[
|a>j w(t)| − λ

]
+

∣∣∣
4: find t-support set It = {i ∈ [d] : κ

(t)
i 6= 0} ⊆ [d]

5: generate adapted probabilities distribution p(t):{
p(t)i = 1

|It| , if κ
(t)
i 6= 0

p(t)i = 0, otherwise

6: sample j from [d] according to p(t)

7: let zj = (∇ f (α(t)))j

8: α
(t+1)
j = sλ(α

(t)
j − zj)

9: w(t+1) = ∇ f (Aα(t+1))
10: end for
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5. Applications

Algorithm 6 Stochastic Coordinate Descent (ada-gap)

1: let α(0) = 0, w(0) = ∇ f (Aα(0))
2: for t = 0,1,... do
3: calculate feature-wise duality gaps G(t)

j for all j ∈ [d]

G(t)
j = B

[
|a>i w(t)| − λ

]
+
+ λ|α(t)

i |+ α
(t)
i a>i w(t)

4: generate adapted probabilities distribution p(t):

p(t)i =
G(t)

i

∑j G(t)
j

5: sample j from [d] according to p(t)

6: let zj = (∇ f (α(t)))j

7: α
(t+1)
j = sλ(α

(t)
j − zj)

8: w(t+1) = ∇ f (Aα(t+1))
9: end for

Algorithm 7 Stochastic Coordinate Descent (adaptive)

1: let α(0) = 0, w(0) = ∇ f (Aα(0))
2: for t = 0,1,... do
3: calculate absolute values of dual residuals |κ(t)j | for all j ∈ [d]

|κ(t)j | =
∣∣∣αj − B · sign(a>i w(t)) ·

[
|a>j w(t)| − λ

]
+

∣∣∣
4: generate adapted probabilities distribution p(t):

p(t)i =
|κ(t)i |‖ai‖

∑j |κ
(t)
j |‖aj‖

5: sample j from [d] according to p(t)

6: let zj = (∇ f (α(t)))j

7: α
(t+1)
j = sλ(α

(t)
j − zj)

8: w(t+1) = ∇ f (Aα(t+1))
9: end for
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5.2. Lasso

Algorithm 8 Stochastic Coordinate Descent (ada-uniform)

1: let α(0) = 0, w(0) = ∇ f (Aα(0))
2: for t = 0,1,... do
3: calculate absolute values of dual residuals |κ(t)j | for all j ∈ [d]

|κ(t)j | =
∣∣∣αj − B · sign(a>i w(t)) ·

[
|a>j w(t)| − λ

]
+

∣∣∣
4: find t-support set It = {i ∈ [d] : κ

(t)
i 6= 0} ⊆ [d]

5: generate adapted probabilities distribution p(t):p(t)i = 1
2|It| +

|κ(t)i |‖ai‖
2 ∑j |κ

(t)
j |‖aj‖

, if κ
(t)
i 6= 0

p(t)i = 0, otherwise

6: sample j from [d] according to p(t)

7: let zj = (∇ f (α(t)))j

8: α
(t+1)
j = sλ(α

(t)
j − zj)

9: w(t+1) = ∇ f (Aα(t+1))
10: end for
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Algorithm 9 Stochastic Coordinate Descent (ada-division)

1: choose parameter m > 1 (empirically)
2: let α(0) = 0, w(0) = ∇ f (Aα(0))
3: for t = 0,1,... do
4: if mod(t, d) == 0 then
5: calculate absolute values of dual residuals |κ(t)j | for all j ∈ [d]

|κ(t)j | =
∣∣∣αj − B · sign(a>i w(t)) ·

[
|a>j w(t)| − λ

]
+

∣∣∣
6: generate adapted probabilities distribution p(t):

p(t)i =
|κ(t)i |‖ai‖

∑j |κ
(t)
j |‖aj‖

7: end if
8: sample j from [d] according to p(t)

9: let zj = (∇ f (α(t)))j

10: α
(t+1)
j = sλ(α

(t)
j − zj)

11: w(t+1) = ∇ f (Aα(t+1))
12: generate p(t+1): {

p(t+1)
i = p(t)i /m, if i == j

p(t+1)
i = p(t)i , otherwise

13: Normalize p(t+1)

14: end for

5.3 Comparison of computational complexity

In this section we discuss the computational cost of the Stochastic Coordi-
nate Descent Algorithm with various sampling schemes. We first discuss
the complexity of sampling and updating the probability vector, then we
talk about complexity of distribution generation and variable update. The
comparison is summarized in Table 5.1.

Remark 5.1 nnz is the number of non-zero elements in the data matrix, i.e. matrix
A in (3.1).

Remark 5.2 An epoch consists of n consecutive coordinate update iterations, where
n is the number of datapoints in the SVM case or the number features in the Lasso
case.
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5.3. Comparison of computational complexity

Sampling and probability update In each iteration, the algorithm samples
a coordinate (datapoint in SVM case or feature in Lasso case) from some non-
uniform probability distribution. The straightforward approach requires
O(n) operations to sample a point from non-uniform distribution. To do
it more efficiently we use tree data structure from [25] to maintain sampling
probability vector. Tree structure requires O(n log(n)) operations to build
itself and O(log(n)) operations to sample a point from the distribution or
update one of the probabilities.

Variable update and distribution generation To compute all dual residuals
κi or all coordinate-wise duality gaps Gi we need to do O(nnz) operations
(due to the matrix-vector multiplication). The cost of updating the variable
α is O(nnz/n).

Total cost of an epoch The most expensive sampling schemes are SVM
adaptive, Lasso adaptive, Lasso supportSet-uniform, Lasso ada-uniform and Lasso
ada-gap. For all of them we completely recompute the sampling distribu-
tion at the beginning of each iteration and this has a per-epoch complexity
of O(n · nnz). During each epoch we n times update the variable α, this
has complexity O(n · nnz/n) = O(nnz). Since the sampling distribution is
completely recomputed each iteration, the tree structure does not give an
advantage and the complexity of n samplings is O(n2). The total complexity
is O(nnz + n2 + n · nnz) = O(n · nnz).
Two heuristic adaptive schemes SVM adaptive+ and Lasso ada-division recom-
pute sampling distribution only once per epoch (O(nnz) operations) and
update only one of the probabilities on each iteration. Here we use the tree
structure with which the per-epoch cost of sampling is O(n log(n)). The cost
of variable update stays O(nnz). Overall complexity is O(n log(n)+ 2nnz) =
O(n log(n) + nnz).
Fixed non-uniform sampling schemes SVM importance, Lasso importance and
Lasso gap-init require only one computation of the sampling distribution
(that is O(nnz) operations). The complexity of n sampling operations us-
ing tree structure is O(n log(n)), the complexity of a variable update is
O(nnz). Overall asymptotic complexity is the same as in the heuristic adap-
tive schemes: O(n log(n) + nnz).
The uniform sampling schemes have complexity per epoch of O(nnz).
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5. Applications

Table 5.1: Computational cost of one epoch of SCD with various sampling
schemes

Algorithm Cost of an Epoch Mode
SVM uniform O(nnz) uniform
SVM importance O(nnz + n log(n)) fixed non-uniform
SVM adaptive O(n · nnz) adaptive
SVM adaptive+ O(nnz + n log(n)) adaptive
Lasso uniform O(nnz) uniform
Lasso importance O(nnz + n log(n)) fixed non-uniform
Lasso gap-init O(nnz + n log(n)) fixed non-uniform
Lasso supportSet-uniform O(n · nnz) adaptive
Lasso adaptive O(n · nnz) adaptive
Lasso ada-uniform O(n · nnz) adaptive
Lasso ada-division O(nnz + n log(n)) adaptive
Lasso ada-gap O(n · nnz) adaptive
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Chapter 6

Experimental results

In this chapter, we evaluate the discussed algorithms on two typical convex
optimization problems - smoothed hinge loss SVM and Lasso.

Performance metric We use suboptimality and duality gap (see (3.4)) as
measures of algorithm performance. All figures in this chapter are given in
the log scale and all the reported results are averaged over 5 runs.

Datasets The experiments were performed on two datasets from LIBSVM
website1, which are listed in Tables 6.1, 6.2. mushrooms is dataset from UCI
repository [1], rcv1(subsampled) is a subsampled version of Reuters news sto-
ries corpus (rcv1 dataset). Below we describe how the subsampling was
done.
The initial rcv1 dataset has 20242 features and 47236 datapoints. We ran-
domly picked 10000 datapoints and 1000 features and then removed data-
points which had zero values on all picked features and features which had
zero value for all picked datapoints. The resulting dataset rcv1(subsampled)
has 7438 datapoints and 809 features.

6.1 Smoothed hinge loss SVM problem

In this section we perform experiments on smoothed hinge loss SVM. The
value of parameter λ in (5.1) was chosen in a way to minimize the test error.
We use λ = 0.05 for both rcv1(subsampled) and mushrooms datasets. SCD
adaptive+ showed the best practical convergence with value of parameter m
in range (5, 10). In our experiments m was chosen to be equal to 10. The
results of the experiments are shown in Figures 6.1 and 6.2. From figures we
see that the adaptive method clearly outperforms all other methods in terms

1http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
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6. Experimental results

of number of iterations. The heuristic SCD adaptive+ is slower than adaptive,
but significantly faster than the method with the same asymptotic complex-
ity - SCD importance. SCD importance shows no advantage over SCD uniform.
This can be explained by relatively small variance of datapoint norms (see ta-
ble 6.1), which leads to proximity of importance (4.8) and uniform sampling
distributions.

Table 6.1: Datasets SVM

Dataset Features Datapoints nnz/(nd) mean of ‖ai‖ Var(‖ai‖)
mushrooms 112 8124 18.8% 4.58 0
rcv1(subsampled) 809 7438 0.3% 1.53 0.27
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Figure 6.1: SVM. Comparison of different versions of Stochastic Coordinate
Descent Algorithm based on duality gap(left) and suboptimality(right) mea-
sure - rcv1 dataset
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Figure 6.2: SVM. Comparison of different versions of Stochastic Coordinate
Descent Algorithm based on duality gap(left) and suboptimality(right) mea-
sure - mushrooms dataset
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Figure 6.3: Lasso. Comparison of different fixed distribution versions of
Stochastic Coordinate Descent Algorithm based on duality gap(left) and sub-
optimality(right) measure - rcv1 dataset

6.2 Lasso

In this section we evaluate SCD with various sampling schemes on the Lasso
problem (5.3). The parameter λ in (5.3) was chosen in a way such that the
cardinality of the true support set was between 10% and 15 % of the total
number of features. For mushrooms we use λ = 0.05, for rcv1(subsampled) we
use λ = 7 · 10−4.

Table 6.2: Datasets Lasso

Dataset Features Datapoints nnz/(nd) mean of ‖ai‖ Var(‖ai‖)
mushrooms 112 8124 18.8% 31.35 545
rcv1(subsampled) 809 7438 0.3% 2.58 17.3

6.2.1 Methods with fixed sampling distributions

We first evaluate Lasso SCD with fixed non-uniform distributions. The re-
sults on rcv1(subsampled) and mushrooms are given in Figure 6.3 and Figure
6.4 correspondingly. As we see, SCD importance converges faster than SCD
uniform on both datasets, and naturally the performance difference grows
with the value of variance in the dataset (see Table 6.2). The heuristic sam-
pling scheme based on coordinate-wise duality gap initialization - SCD gap-
init significantly outperforms both of them.

6.2.2 Methods with adaptive sampling distributions

In this section we evaluate the adaptive methods. The results on rcv1(subsampled)
and mushrooms are given in Figure 6.5 and Figure 6.6 correspondingly. The
importance sampling is shown as a baseline method. From the figures we
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Figure 6.4: Lasso. Comparison of different fixed distribution versions of
Stochastic Coordinate Descent Algorithm based on duality gap(left) and sub-
optimality(right) measure - mushrooms dataset

0 5 10 15 20 25

Epochs

1.5

2

2.5

3

3.5

lo
g
 o

f 
D

u
a
lit

y
G

a
p

supportSet-uniform

adaptive

ada-uniform

ada-division

ada-gap

importance

0 5 10 15 20 25

Epochs

-2

-1.5

-1

-0.5

0

lo
g
 o

f 
s
u
b
o
p
ti
m

a
lit

y

supportSet-uniform

adaptive

ada-uniform

ada-division

ada-gap

importance

Figure 6.5: Lasso. Comparison of different adaptive versions of Stochastic
Coordinate Descent Algorithm based on duality gap(left) and suboptimal-
ity(right) measure - rcv1 dataset

see that in general all adaptive methods outperform the fixed sampling
methods and have approximately same convergence speed with exception
of suboptimality convergence of the SCD adaptive in Figure 6.6. The con-
vergence process of SCD adaptive on mushrooms dataset shows an unusual
dynamic - it has a fast (but not stable) convergence in terms of duality gap,
but very poor convergence in terms of primal suboptimality.
Out of all adaptive methods SCD ada-gap and SCD ada-division algorithms
showed slightly better convergence speed with both suboptimality and du-
ality gap measures.
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Figure 6.6: Lasso. Comparison of different adaptive versions of Stochastic
Coordinate Descent Algorithm based on duality gap(left) and suboptimal-
ity(right) measure - mushrooms dataset

6.3 Summary

In this section we summarize the results of the conducted experiments.

• the best convergence on smoothed hinge loss SVM problem showed
the SCD adaptive method. This supports the developed theory. How-
ever high asymptotic computational complexity of SCD adaptive makes
it impractical, instead of it we advise to use adaptive+ heuristic, which
has the same moderate asymptotic computational complexity as SCD
importance, but significantly faster than it in terms of convergence
speed.

• the experiments on Lasso problem showed an advantage of fixed non-
uniform sampling over the uniform and superiority of the adaptive
sampling over the fixed. This also supports out theory.

• the experiments showed that the advantage of importance sampling
over the uniform depends on the variance of ‖ai‖ in the dataset.

• the best fixed non-uniform sampling proved to be gap-init, which is
sampling based on initial coordinate-wise duality gaps.

• the proposed adaptive methods have approximately same performance
with exception of SCD adaptive, which we do not recommend to use
due to its instability.

• the best performance on Lasso was shown by SCD ada-division and SCD
ada-gap. The advantage of SCD ada-division is low asymptotic computa-
tional complexity (O(nnz+ d log(d))), however the drawbacks are lack
of theoretical basis and dependence on empirically chosen parameter
m. On the other hand SCD ada-gap has proven convergence bounds
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(Theorem 4.13), but the per-epoch computational cost (O(d · nnz)) is
higher than the one of SCD ada-division.
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Chapter 7

Conclusion

In this thesis, we discussed the Stochastic Coordinate Descent algorithm
with fixed non-uniform and adaptive sampling schemes for convex partially
separable optimization problems with strongly convex and general convex
regularizers. We proposed a novel analysis of convergence rate for SCD with
arbitrary adaptive sampling distributions. To the best of our knowledge we
were first to develop such analysis for problems with general convex reg-
ularizer, e.g. Lasso. Based on our analysis we introduced new adaptive
and fixed non-uniform sampling schemes and theoretically proved their su-
periority over conventional uniform sampling approach. We supported the
developed theory with numerical experiments on smoothed hinge loss SVM
and Lasso and showed in practice that the new adaptive schemes signifi-
cantly outperform the non-adaptive ones.
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