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1 Introduction

The goal of this project is to find hidden structures in large-scale and high-dimensional
datasets. Deep Learning has shown great promise to extract meaningful features for
data classification. In this project we leverage this feature identification technique to
visualize patterns of interest that are usually hard to access. Specifically, we applying
non-linear dimensionality reduction techniques (such as t-SNE) to the deep learning
features and reveal essential patterns characterizing the dataset. As an application, the
project focus on the well-known images benchmark MNIST dataset, well-known audio
benchmark GTZAN dataset and Montreux Jazz Festival archives. The deliverable of
the project is matlab code that solves 3 tasks - visualisation of ambiguous datasets,
structure mining and music recommendation.

2 Project Goal

The goal of the project is to develop a tool to find hidden structures in large-scale and
high-dimensional datasets. The idea of the project is briefly described in the figure 1.
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Figure 1: Project structure

The system is given high-dimensional complex dataset (e.g. GTZAN), which we
process with combination of Deep Learning and t-distributed Stochastic neighbour em-
bedding algorithms to get a 2D projection with visible structure of the data. Then we
analyze obtained ”good” 2D projection to mine the structural properties of the data.

3 Features

Since the project is concentrated mainly on music datasets and raw audio data is too
redundant for visualisation algorithms to process directly, we first extracted features
from it. We used two types of features - handcrafted and learned. As handcrafted
features we used features described in (Sturm, 2013) and Temporal Echonest features.
As learned features we used ones obtained by dictionary learning on audio spectrograms.

3.1 Handcrafted (Sturm ’13)

In paper (Sturm, 2013) there are two types of features - short term and long term. Short
term features are computed on small segments in time. These segments are called anal-
ysis windows and have to be small enough so that the frequency characteristics of the
magnitude spectrum are relatively stable. However, the sensation of a sound “texture”
arises as the result of multiple short-time spectrums with different characteristics follow-
ing some pattern in time. For example, speech contains vowel and consonant sections
which have very different spectral characteristics. Therefore, in order to capture the
long term nature of sound “texture” long-term features computed on larger ”texture”
windows are used.
Short-term audio features

1. Octave-based spectral contrast (OSC) - was developed to represent the spectral
characteristics of a music piece. It considers the spectral peak and valley in
each sub-band separately. In general, spectral peaks correspond to harmonic
components and spectral valleys correspond to non-harmonic components or noise
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in a music piece. Therefore, the difference between spectral peaks and spectral
valleys will reflect the spectral contrast distribution.

2. Mel-frequency cepstral coefficients (MFCCs) - are coefficients that collectively
make up short-term power spectrum of a sound, based on a linear cosine transform
of a log power spectrum on a nonlinear mel scale of frequency.

3,4. Spectral centroid and spectral rolloff
Spectrogram X(ω; t) is normalised such that it sums to one, to produce the
probability mass function pX(ω; t) and cumulative distribution function PX(ω; t).
In terms of these Spectral centroid is expectation E[ω] and Spectral rolloff is
arg minω PX(ω; t) ≥ 0.85.

5 Spectral Flux is a squared difference between the normalized magnitudes of suc-
cessive spectral distributions -

||X(ω; t)−X(ω; t− 1)||2√
F
2

,

where F is length of Fourier spectrum.

6 Zero-crossings - number of times the time-domain signal amplitude changes sign.

Long-term audio features

1. Octave-based modulation spectral contrast (OMSC) - feature extracted from long-
term modulation spectrum analysis to describe the time-varying behavior of the
music signals. See [2].

2. Low-energy - the percentage of analysis windows that have less RMS energy than

the average RMS energy across the texture window. RMS(y) = ||y||2
N

3,4. Modulation spectral flatness measure (MSFM) and Modulation spectral crest
measure (MSCM) are modified versions of spectral flatness measure (SFM) and
spectral crest measure (SCM) respectively where the SFM and the SCM are the
features that represent the short-term spectrum. See [3].

The dimension of feature representation of 30-sec song is 1150.

3.2 Handcrafted (Echonest)

The Echonest Analyzer (Jehan, 2014) implements an onset detector which is used to
localize music events called Segments. These segments are described as sound entities
that are relative uniform in timbre and harmony and are the basis for further feature
extraction. For each Segment the following features are derived from musical audio
signals:
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• Segments Timbre - 12 dimensional vector with unbounded values centered
around 0 representing a high level abstraction of the spectral surface.

• Segments Pitches - normalized 12 dimensional vector ranging from 0 to 1 cor-
responding to the 12 pitch classes C, C#, to B.

• Segments Loudness Max represents the peak loudness value within each seg-
ment.

• Segments Loudness Max Time describes the offset within the segment of the
point of maximum loudness.

• Segments Start provide start time information of each segment/onset.

Temporal Echonest Features (TEN) [Schindler, 2014]: All statistical moments of
Segments Pitches, Segments Timbre, Segments Loudness Max, Segments Loudness Max
Time and lengths of segments calculated from Segments Start are calculated.
The dimension of feature representation of 30-sec song is 232.

3.3 Unsupervised Feature Learning with Sparse Coding

Audio features can be generated automatically under the assumption that audio has a
sparse representation (Henaff et al., 2011). To extract learned features each song was
first divided into short frames of 1024 samples each, corresponding to 46.4ms of audio.
There was a 50% overlap between consecutive frames. Then a Constant-Q transform
(CQT) was applied to each frame, with 96 filters spanning four octaves from C2 to
C6 at quarter-tone resolution. After that, to make low-energy signals amplified and
high-energy ones muted the local contrast normalisation was applied. In the end for
the purpose of dictionary learning and sparse coding each frame was normalised to
have zero mean and unit L2-norm. We trained dictionary on normalized frames, the
algorithm could be described as follows :

Find basis (dictionary) D = [d1, d2, . . . , dm] ∈ Rn×m and coefficient matrix Z ∈ Rm×N ,
such that obtained projection is `2 close to the original data matrix X ∈ Rn×N and Z
is sparse:

min
Z,D

1

2
||X −DZ||22 + λ||Z||1, s.t. ||dj||2 ≤ 1, ∀j ∈ [1, . . . ,m].

We use m = 225 element dictionary, that means that the dimension of feature repre-
sentation of 30-sec song is 225.
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4 t-SNE as a visualisation technique

t-distributed stochastic neighbor embedding (t-SNE) is a nonlinear dimension-
ality reduction technique for embedding high-dimensional data into a low-dimensional
space (e.g. 2D).
The t-SNE algorithms comprises two main stages:

1. Given a set of N data points x1, . . . , xN ∈ Rn (n � 1), t-SNE computes proba-
bilities pij that are proportional to the similatrity of data points xi and xj:

pi|j =
e
−
||xi−xj ||

2

2σ2
i∑

k 6=i e
− ||xi−xk||

2

2σ2
i

,

pij =
pi|j + pj|i

2N
.

2. t-SNE defines a similar probability distribution over the points y1, . . . , yN ∈ R2

in the low-dimensional map:

qij =

∑
k 6=m(1 + ||yk − ym||2)

1 + ||yi − yj||2

and minimizes the Kullback–Leibler divergence between the two distributions:

min
{yi}Ni=1

KL(P ||Q) =
∑
i 6=j

pij log
pij
qij
.

5 Deep Learning

Deep neural network:

• uses a cascade of many layers of nonlinear processing units for feature extraction
and transformation. The next layer uses the output from the previous layer as
input.

• is based on the unsupervised learning of multiple levels of features or represen-
tations of the data. Higher level features are derived from lower level features to
form a hierarchical representation.

• learns multiple levels of representations that correspond to different levels of ab-
straction; the levels form a hierarchy of concepts

Assumption:
Deep Learning should distangle complex and high-dimensional datasets by learning new
representations in which classes are more and more discriminated, see figure 2.
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Figure 2: t-SNE visualisation of Deep Learning hierarchical representations of MNIST
dataset

6 Datasets description

6.1 MNIST

The MNIST [LeCun et al., 1998] dataset consists of 60,000 images of handwritten
digits (’0’-’9’). Image size is 28x28, dimensionality 784. See the t-SNE projection of
this dataset in figure 3.

6.2 GTZAN

The GTZAN dataset [Tzanetakis, 2002] consists of 1,000 audio tracks of 30 second
length. It contains 10 genres, each represented by 100 tracks. The tracks are all 22050Hz
Mono 16-bit audio files in .wav format. See the t-SNE projection of handcrafted feature
representation of this dataset in figure 7 and learned feature representation in figure
12.

6.3 MJF

The Montreux Jazz Festival [http://www.montreuxjazz.com/] dataset consists of 9,912
samples. We extracted a subset of 3,726 samples to have 9 balanced classes (genres)
with 414 songs in each. We considered for each song its temporal echonest features.
See the t-SNE projection of this dataset in figure 15.
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7 Data Exploration

7.1 MNIST

For the purpose of experiment we used 200-200-10 neural network architechture (2
hidden layers with 200 neurons each). The classifier based on this architecture has
97.8% accuracy on test set, that means that this model has good generalization and
therefore models parameters should contain the structure of the data.
In figure 3 one can see the original MNIST dataset (each element is in R784) projected
by t-SNE on 2D plane. One could clearly see that algorithm devided the data into
clusters where each corresponds to a different digit. However, the clusters are badly
separated, and the margins between some of them are hardly visible. For example group
of clusters corresponding to digits ’8’,’3’,’5’ and group ’4’,’9’. Each of these groups looks
like one big cluster and their components are hardly visible. This is consistent with
human perception, because both groups of handwritten digits are very similar between
each other - (’4’ and ’9’) - ’9’ could be seen as a rounded ’4’; (’8’,’3’ and ’5’) - ’8’ could
be seen as a closed version of ’3’ and ’5’.
In figures 4 and 5 one can see the t-SNE visualization of features extracted by 1st and
2nd hidden layer of NN correspondingly(since architechture is 200-200-10, features are
in R200). As one could see, the cluster separability is visually improving with each
layer. While the visualization of original data(could be considered as layer 0) has bad
cluster separation, the visualization of second-layer features consists of clearly visible
and separated 10 clusters. In figure 2 one could notice that t-SNE divided the data into
11 distinct clusters and digit ’1’ has two clusters. This is explained by two different
ways of writing this digit, see figure 6. On the first hidden layer neural network(NN)
found 11 types of digits and accrding to NN no other digit except ’1’ has two sufficiently
different ways of writing it.
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Figure 3: Original MNIST dataset visualized by t-SNE
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Figure 4: First-layer features of MNIST dataset visualized by t-SNE
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Figure 5: Second-layer features of MNIST dataset visualized by t-SNE
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Figure 6: Different ways of writing digit ’1’

7.2 GTZAN

7.2.1 Deep Learning + handcrafted

In figure 7 one can see the feature representation of GTZAN dataset projected by t-
SNE on 2D plane. One could clearly see, that in opposite to MNIST, the data is badly
mixed. The clusters of songs with same genre are not visible. The only visible group is
classical music and that proves us that classical music is pure genre and is very different
from others.
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Figure 7: Original GTZAN dataset using [Sturm ’13] features visualized by t-SNE
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To discriminate the genres so we could see the patterns that are hidden in the
projection of the original dataset, we used 200-200-10 neural network. The first layer
representation is given in figure 8.
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Figure 8: First-layer features of GTZAN dataset

As we can see, the genres are much less mixed and the projection’s locations are
intuitive to humans - the projection highligted three exteme genres, see figure 9. At
the right side is the classical music with jazz and part of blues, at the top is metal with
rock close to it and on the left side is active dancing music - disco, pop and hip-hop.

Figure 9: First-layer features of GTZAN dataset, interesting regions are highlighted
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The second layer representation is given in figure 10.
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Figure 10: Second-layer features of GTZAN dataset

Figure 11 shows some interesting structural properties of GTZAN dataset. For
instance, blues is divided into 2 parts – first part is separated from other genres, while
the second lies very close to jazz. This is not surprising since jazz was originated from
blues. Same happens with reggie and hip-hop – small group of reggie data lies very
close to hip-hop (hip-hop was originated from reggie and funk). Moreover, we see that
hip-hop is divided into two clusters, after listening to the songs in each cluster, we found
out that the left claster corresponds to ”old-school” subgenre and right to the ”rap”
subgenre.
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Figure 11: Second-layer features of GTZAN dataset, interesting regions are highlighted

7.2.2 Deep Learning + learned

In figure 12 one can see the t-SNE projection of the original GTZAN dataset in learned
feature representation.
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Figure 12: Original GTZAN dataset using learned features visualized by t-SNE

As can be seen the data is highly mixed and the structure is not visible. To pick
out the structure we learned 165-165-10 neural network. The representation given by
the first NN’s hidden layer is shown in figure 13.
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Figure 13: First-layer features of GTZAN dataset

As could be seen there is no improvement, the data is so mixed that we need to go
to deeper representations. The second layer representation is given in figure 14.
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Figure 14: Second-layer features of GTZAN dataset

Now the data is very well separated and this visualisation is consistent with the
one obtained from handcrafted features - jazz and part of blues are close to the classic
music and hip-hop is divided into two classes.
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7.3 MJF

In figure 15 the original echonest feature representation of MJF is shown. As could be
seen the data is very mixed, to pick out the structure we used 300-300-300-9 neural
network. The first, second and third layer representations are shown in the figures 16,
17 and 18 correspondingly. The genres become more and more discriminated with layer
number, however even on the third layer the data is still mixed.
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Figure 15: Original MJF dataset using echonest features visualized by t-SNE
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Figure 16: First-layer features of MJF dataset
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Figure 17: Second-layer features of MJF dataset

-100 -50 0 50 100 150
-100

-80

-60

-40

-20

0

20

40

60

80

100
Rock
Soul
Blues
Jazz
Pop
Alternative
Folk
Electronic
Indie

Figure 18: Third-layer features of MJF dataset

As could be seen from the last layer representation Indie and Alternative genres
overlap each other, see figure 19. Since that happens even on the third layer, we can
conclude that for the algorithm finds those genres similar. And that correspond to the
ground truth, because Alternative and Indie are interchangeable terms, the difference is
only that Alternative was the preferred American term and Indie came from the United
Kingdom.
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Figure 19: Third-layer features of MJF dataset (Indie and Alternative)

Another interesting property of this dataset is the position of genres Jazz, Blues
and Soul, see figure 20. The Soul genre clasterize between Blues and Jazz - that
understandable since Soul appeared as a mix of Jazz and Blues.

Figure 20: Third-layer features of MJF dataset (Jazz, Blues and Soul)

8 Music recommendation

Since songs that are similar for human perception in the Deep Learning+t-SNE 2D
projection are close to each other, the proposed visualisation method could be used to
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produce a playlist with smooth transitions between consecutive songs. Here we present
two methods of creating the playlist - Shortest Path and Random Walk.

8.1 Shortest path

In this method user choses two songs - the first and the last in the playlist, e.g. the
first is Classical and the last is Pop (see figure 21). To produce a playlist with smooth
transitions we build a k-nearest neighbour graph based on 2D projection of music
dataset. The shortest path between two given points computed by Dijkstra’s algorithm
form a required playlist.
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Figure 21: Playlist created by shortest path algorithm

8.2 Random walk

In this method user choses only one song which he wants to listen to first and the
playlist is generated by random walk algorithm on the k-nearest neighbour graph from
subsection above. The example of random walk playlist is shown in figure 22.
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Figure 22: Playlist created by random walk algorithm

9 Conclusion

Deep Learning + t-SNE is a promising visualisation tool for complex high-dimensional
datasets. The applications are music recommendation and structure mining. For future
development we plan to combine visualisation with Deep Learning, so the user could
predefine on which structural properties of the dataset he wants to concentrate and
deep learning visualisation would be performed in a way to emphasise those properties.
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