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Abstract
Coordinate descent methods employ random partial updates of

decision variables in order to solve huge-scale convex optimiza-
tion problems. In this work, we introduce new adaptive rules for
the random selection of their updates. By adaptive, we mean that
our selection rules are based on the dual residual or the primal-
dual gap estimates and can change at each iteration. We theo-
retically characterize the performance of our selection rules and
demonstrate improvements over the state-of-the-art, and extend
our theory and algorithms to general convex objectives. Numer-
ical evidence with hinge-loss support vector machines and Lasso
confirm that the practice follows the theory.

Problem
We solve the problem of the following template:

min
α∈Rn

f (Aα) +
∑
i

gi(αi), (1)

where A is the data matrix, f is a smooth convex function, and each gi
is a general convex function.

Primal-dual framework
We are working in the following primal-dual optimization framework
([Dünner et al., 2016]):

min
α∈Rn

[
OA(α) := f (Aα) +

∑
i

gi(αi)
]
, (A)

min
w∈Rd

[
OB(w) := f∗(w) +

∑
i

g∗i (−a>i w)
]
, (B)

where we have A = [a1, . . . ,an].

Duality gap
The duality gap is the difference between primal and dual solutions:

G(α,w) := OA(α)− (−OB(w)), (2)

which can be written as a sum of coordinate-wise gaps:

G(α) =
∑
i

Gi(αi) :=
∑
i

(
g∗i (−a>i w) + gi(αi) + αia

>
i w
)
. (3)

Preliminaries
Definition (Dual Residual. A generalization of [Csiba et al., 2015]).
i-th dual residue on iteration t is given by:

κ
(t)
i := min

u∈∂g∗i (−a>i w(t))
|u− α(t)

i |.

Definition (Nonuniformity measure, [Osokin et al., 2016]). The
nonuniformity measure of a vector x ∈ Rn:

χ(x) :=
√

1 + n2Var[p],

Definition (Averaged residual). Averaged residual on iteration t is
given by:

F (t) :=
1

n2β

∑
i∈It

(|κ(t)
i |

2‖ai‖2

p
(t)
i

)
. (4)

Algorithm 1 Coordinate Descent

1: Let α(0) := 0 ∈ Rn,w(0) := w(α(0))
2: for t = 0, 1, ..., T do
3: Sample i ∈ [n] randomly according to p(t)

4: Find ∆αi minimizing OA(α(t) + ei∆αi)

5: α(t+1) := α(t) + ei∆αi
6: w(t+1) := w(α(t+1))
7: end for

Adaptive Sampling residual-based CD
Theorem. If f is a 1

β-smooth and g∗i is Li-Lipschitz for each i, then the
residual-based CD iterates satisfy

E[ε
(t)
A ] ≤

2F ◦n2 +
2ε

(0)
A

pmin

2
pmin

+ t
. (5)

A duality gap G(ᾱ) ≤ ε is reached after an overall number of itera-
tions T whenever

T ≥ max

{
0,

1

pmin
log
( 2ε

(0)
A

n2pminF ◦

)}
+

5F ◦n2

ε
− 1

pmin
. (6)

Here F ◦ is an upper bound on E[F (t)].

Adaptive Sampling gap-based CD
Theorem. If f be a 1

β-smooth and g∗i is Li-Lipschitz for each i, then
the gap-based CD iterates satisfy

E[ε
(t)
A ] ≤

2F ◦g n
2 + 2nε

(0)
A

t + 2n
, (7)

where F ◦g is an upper bound on E
[
F

(t)
g

]
. The

−→
G and

−→
F are defined as

follows:

−→
G := (Gi(α

(t)))ni=1,
−→
F := (‖ai‖2|κ

(t)
i |

2)ni=1,

and F (t)
g is:

F
(t)
g :=

χ(
−→
F )

nβ(χ(
−→
G))3

∑
i

‖ai‖2|κ
(t)
i |

2. (8)

Variations along the theme
• uniform - sample uniformly at random.

• supportSet uniform - p(t)
i :=

{
1
mt
, if κ(t)

i 6= 0

0, otherwise.

• adaptive - p(t)
i :=

|κ(t)i |‖ai‖∑
j |κ

(t)
j |‖aj‖

.

• ada-uniform - p(t)
i :=


0.5
mt

+ 0.5
|κ(t)i |‖ai‖∑
j |κ

(t)
j |‖aj‖

, if κ(t)
i 6= 0

0, otherwise

• importance - sample with a fixed non-uniform variant of adaptive
obtained by bounding κ(t)

i with 2Li: pi :=
Li‖ai‖∑
j Lj‖aj‖

.

• ada-gap - p(t)
i :=

Gi(α
(t))

G(α(t))
.

• gap-per-epoch - Use ada-gap but with updates per-epoch. The gap-
based distribution is only recomputed at the beginning of each epoch
and stays fixed during each epoch.

Experimental results
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(a) Gap, fixed distr.
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(b) Subopt., fixed distr.
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(c) Gap, adaptive
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(d) Suboptimality, adaptive
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(e) Gap, fixed distr.
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(f) Subopt., fixed distr.
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(g) Gap, adaptive
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Figure 1: Lasso (two top rows) and SVM (two bottom rows). Comparison of dif-
ferent fixed and adaptive variants of CD, reporting duality gap and suboptimality
measures vs. epochs - mushrooms and ionosphere datasets.

Dataset d n nnz/(nd) cv =
µ(‖ai‖)
σ(‖ai‖)

mushrooms 112 8124 18.8% 1.34
ionosphere 351 33 88% 3.07

Table 1: Datasets
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(a) Gap
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Figure 2: Lasso on the mushrooms dataset. Performance in terms of duality gap and
suboptimality, plotted against the total number of vector operations.

Algorithm Cost per Epoch
uniform O(nnz)
importance O(nnz + n log(n))
gap-per-epoch O(nnz + n log(n))
supportSet-uniform O(n · nnz)
adaptive O(n · nnz)
ada-uniform O(n · nnz)
ada-gap O(n · nnz)

Table 2: A summary of computational costs

Conclusion
•We investigated adaptive rules for adjusting the sampling probabili-

ties in coordinate descent.

•Our theoretical results provide improved convergence rates for a
more general class of algorithm schemes on one hand, and opti-
mization problems on the other hand, where we are able to directly
analyze CD on general convex objectives (as opposed to strongly
convex regularizers in previous works).

•Our results are particularly useful for L1 problems and (original)
hinge-loss objectives.

•We advocate the use of the computationally efficient gap-per-
epoch sampling scheme in practice. While the scheme is close to
the ones supported by our theory, an explicit primal-dual conver-
gence analysis remains a future research question.
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